FVM: Practical Feather-Weight Virtualization on
Commodity Microcontrollers

Junchao Li*, Runsheng Hou*, Guangyong Shang,
Huanle Zhang, Xiuzhen Cheng, Fellow, IEEE, and Runyu Pan

Abstract—Recently, there has been an increasing drive to
consolidate multiple microcontrollers into one physical entity,
due to advantages in reducing overall costs, enhancing reliability,
and simplifying hardware interconnections. To reduce consolida-
tion engineering costs, minimizing system latency and memory
footprint is important as well as maintaining compatibility with
legacy software. In this paper, we propose a virtualization-based
solution called Feather-weight Virtual Machine (FVM) that fo-
cuses on these goals. FVM enables low latency by specializing the
virtualization model to Real-Time Operating Systems (RTOSes),
achieves small footprint by adapting management policies to
microcontroller memories, attains high compatibility by aligning
with microcontroller ecosystem idiosyncrasies, finally allowing
practical consolidation across a wide range of commodity mi-
crocontrollers. We implement and evaluate FVM on ARMv6-M,
ARMv7-M, and RISC-V architectures with two toolchains and
two RTOSes, and it can fit into 20 KiB of RAM with less than
5% latency bloat.

Keywords-Microcontroller consolidation, Virtualization, Micro-
kernel

I. INTRODUCTION

ICROCONTROLLERS are minicomputers that pack all

essential hardware — including a CPU, memory, and
peripherals — onto a single chip that costs less than $10.
They are ubiquitous in automotive, industrial, and consumer
products, where they bring intelligence into machines. Typi-
cally designed to perform specific tasks, microcontrollers run
firmware as a single binary image that boots in bare-metal
mode, lacking runtime protection domain isolation. Resource
scarcity is often used as a scapegoat for this lack of isolation,
as they face stringent restrictions in terms of Size, Weight,
Power, and Cost (SWaP-C).

As product complexity increases, more microcontrollers are
needed, and they are interconnected through communication
interfaces i.e. CAN, SPI and IIC. However, the growing
complexity of interconnections has led to cost and reliability
challenges [1], and the need to consolidate microcontrollers
has taken off [2].

Junchao Li, Runsheng Hou, Guangyong Shang, Huanle Zhang, Xiuzhen
Cheng and Runyu Pan are with the School of Computer Science and
Technology at Shandong University, China. Guangyong Shang is addi-
tionally with the Inspur Yunzhou Industrial Internet Co., LTD. (e-mail:
{junchaoli, rhou} @mail.sdu.edu.cn, {dtczhang, xzcheng, rypan} @sdu.edu.cn,
shangguangyong @inspur.com). Runyu Pan is the corresponding author.

* these authors contributed equally to this work.

This work was partially supported by National Key Research and Develop-
ment Program of China (Grant No.2022YFB4502001), National Natural Sci-
ence Foundation of China (Grant No. 62402291, 62302265, U23A20332), and
Shandong Province Natural Science Foundation (Grant No. ZR2023QF172,
2024HWYQ-020).

Native Guest RTOS
Process vISRs vThds

- = = = == — - [I I |
Top-Half

8 Hypercalls

A \ 4
Schedul
ISR Mgr VMM /Rfeciv:-ri/
=TT T 71
I Interrupt | Reg Ctx HKernel

Fig. 1: FVM overview. The dashed curves represent guest VM
threads (user-level threads) while the solid curves represent microker-
nel threads (kernel-level threads). The red and orange arrows indicate
the fast- and regular- path for interrupt delivery respectively, and the
blue double arrows represent that the VCT can modify USR thread
kernel-level context directly without microkernel system calls.

The mainstream approach in microcontroller consolidation
is to rewrite all legacy firmware and developing an inte-
grated bare-metal image. However, this approach faces three
difficulties. First, rewriting legacy code requires substantial
effort and forfeits previous certifications. Second, the legacy
firmware may rely on incompatible RTOSes or frameworks
that are challenging to coexist. Last, the integrated bare-metal
image often lacks internal isolation, which can lead to fault or
compromise propagation [3], [4].

In the cloud industry, virtualization is broadly employed to
perform consolidation without breaking legacy compatibility
and isolation [5], [6]. In the microcontroller arena, virtual-
ization is also being explored [7], [8], where each Virtual
Machine (VM) corresponds to a virtual microcontroller. Still,
several drawbacks prevent their practical use:

« High execution overheads. They bloat the interrupt
latency and context switch latency by some 5x to 10x,
which is unsuitable for many control applications that
require tight response times.

« Large memory footprint. They require hundreds of
kilobytes of memory to use, and cannot be used on
mainstream commodity microcontrollers that house some
64KiB of RAM.

« Specific hardware requirements. Some require specific
hardware that only appears on a certain architecture to

achieve performant isolation. This restricts their applica-
bility to a broader range of hardware [9].

« Incompatibility with existing ecosystem. They focus on
open-source toolchains which allow flexible pipeline cus-
tomization, and lack compatibility with industry-standard
toolchains that only generate bare-metal images in the
end, or the microcontroller ecosystem in a broader sense.

Due to the shortcomings above, many software fault isola-
tion alternatives have been proposed. Yet, when it comes to
consolidation, there are some downsides that make them less
attractive than virtualization:

« Requiring access to source code. They require a single
party to hold access to the entire codebase, and cannot
cope with situations where source code is held by mutu-
ally distrusting third parties.

« Inability to link against unverified binaries. They
cannot cope with situations where native binaries must
be linked against, hence Over-The-Air (OTA) upgrades
poses great challenges: it is inherently impossible to
check the integrity of the binary updates at development
time.

« High run-time overheads. Some of them rely on in-
terpretation and run-time bounds-checking which bloats
execution time and memory footprint by many times.
This could be mitigated but not prevented by ahead-of-
time compilation.

Other weaknesses are also pronounced, such as fixa-
tions on certain customizable toolchains (often LLVM in
this case) [10], [11], [12], incompatible toolchain modifica-
tions [10], [13], [12], requiring comment markups throughout
the entire codebase [14], or potential incompatibilities with
software originally written in other languages [15], [16].

In a word, these alternatives have many weaknesses that
make them unsuitable for carrying out microcontroller con-
solidation. This paper introduces FVM, a lightweight type II
virtualization framework for microcontroller consolidation. As
Fig. 1 illustrates, FVM integrates VMs, native processes, a
hypervisor and a microkernel. Specifically, FVM (1) minimizes
latency by specializing the virtualization model for RTOSes,
(2) reduces footprint by adapting memory management poli-
cies to microcontroller memory constraints, (3) maximizes
compatibility by aligning with the idiosyncrasies of the micro-
controller ecosystem, and (4) enables practical consolidation
across a wide range of commodity microcontrollers.
Contributions. The primary contribution of this paper is
a demonstration showing that virtualization can be effec-
tively applied for consolidation purposes, even on extremely
resource-constrained commodity microcontrollers.

The paper offers the following contributions:

« we detail the FVM design (§I1I) that enables state-of-the-
art high-performance, low-footprint practical virtualization-
based consolidation on commodity microcontrollers;

« we perform FVM implementations (§1V) on four com-
modity microcontrollers, three popular architectures, two
open-source RTOSes and two industry-standard toolchains,
thereby showcasing its wide compatibility and portability;

« we perform a comprehensive FVM evaluation (§V)

across multiple hardware/software combinations, demon-
strating its low overheads (as little as 5% execution time)
and small footprint (as low as 20KiB).

To the best of our knowledge, FVM is the first framework
to deliver practical performance while ensuring reliability,
security, and compatibility across a wide range of commodity
microcontroller consolidation scenarios.

II. BACKGROUND AND RELATED WORK
A. Virtualization

Virtualization allowing multiple pieces of bare-metal soft-
ware to run in VMs and pool resources on a single physical
machine. We call the physical machine “host” and the VMs
“guests”, and each guest may in turn harness its own processes.

Two major virtualization approaches exist: full virtualiza-
tion, where the guest OSes run unmodified on the hardware
which must be classically virtualizable, and paravirtualization,
which modifies the guest OSes to cope with the hypervisor
interface but makes no assumptions about the underlying hard-
ware. The virtualization architecture also has two categories:
type I, where the hypervisor runs directly on the bare-metal
hardware, and type II, where the hypervisor runs alongside a
host OS that provides basic services such as drivers, memory
management, and scheduling.

Virtualization was initially proposed in the 1960s to support
legacy software for mainframes [17], [18]. In modern scenar-
ios, it is often leveraged to perform consolidation while main-
taining compatibility and isolation [19], [20], [21], particularly
in cloud computing where maximizing hardware utilization is
paramount [22].

In recent years, research pivoted towards real-time embed-
ded systems as well [23], [24], [25], [26], [27], [28], [29],
[30], [5], [6], [31]. These works mainly focused on embedded
microprocessors and generally overlooked microcontrollers.
Nevertheless, many of their contributions also apply to mi-
crocontrollers and is orthogonal to our work.

B. Memory Protection Facilities

Modern microcontrollers provide memory isolation through
Memory Protection Units (MPUs). Unlike Memory Manage-
ment Units (MMUs), MPUs cannot translate virtual addresses
to physical addresses, and only allow dividing the physical
address space into regions with varying access permissions.
The base, size, and access permissions of the regions are
described by a MPU region table within the CPU, which is
explicitly updated by the OS kernel, distinct from MMUs that
automatically fill their TLBs. hile MPUs have limited regions
and cannot perform address translation, they do not generate
TLB misses and are more predictable.

Numerous works have leveraged MPUs to provide isolation
on microcontrollers. FreeRTOS-MPU [32] restricts memory
accesses with MPU, but only addresses safety concerns with-
out considering security [33]. Safer Sloth [34] swaps protec-
tion domain between thread switches, which guards against
transient faults. TockOS [16] relies on Rust for kernel safety
and relies on MPU to confine other applications. ACES [13],
[35] divides the program into compartments according to

security policies and segregates them with MPUs. uXOM [36]
implements execute-only memory with MPUs and unprivi-
leged memory access instructions. Pip-MPU [37] implements a
formally verified separation kernel with MPUs. Other works,
such as Mbed pVisor [38], uSFI [39] and OPEC [40] also
use MPU to confine their protection domains. Compared to
virtualization, they require new languages, toolchain modifi-
cations or workflow changes that are incompatible with the
microcontroller ecosystem.

In addition, some works have explored virtualization [7],
[41], [42], [8]. However, they have high execution overheads
and large memory footprints that is often many times that
of the original RTOS, which makes them impractical for
consolidation scenarios.

Other researchers have employed specialized protection
hardware to achieve virtualization or isolation [43], [44],
[45], [9], [46], [47], [48], [49]. Although these methods are
successful, they rely on specific hardware that are not typically
present on general-purpose commodity microcontrollers.

Memory protection is also used to increase isolation in light-
weight cloud unikernels, which run everything within a single
address space [50], [51], [52], [53]. While these works are not
directly related to this paper, they do highlight the applicability
of memory protection in system design.

C. Software Fault Isolation (SFI)

Many works bound memory accesses with software con-
structs, achieving the same as hardware MPUs. These works
can be further divided into two categories.

The first category relied on compiler checks or binary ver-
ification. TinyOS [54] uses compile-time checks to eliminate
possible access races. ARMor [11] leverages binary verifica-
tion to isolate faults. CRT-C [15] formalizes program com-
partments and achieves privilege separation with specialized
language dialects. Minion [10] and TrustLight [55] determine
memory compartments offline and enforce isolation with the
help of custom hardware.

The second category leverages managed execution environ-
ments originally designed for resource-rich environments, also
known as bytecode interpreters. Recently, many of them are
ported to microcontrollers, including eBPF [56], [57], [58],
[59], Java [60], Python [61], Javascript [62], [63], Lua [64],
and even .NET [65] among many others.

However, both are unsuitable for microcontroller consolida-
tion, because they (1) may restrict the choice of programming
languages, (2) cannot be linked against third-party binaries
without breaking isolation, and (3) induce long latency and
large memory overheads when compared to the native binaries.

D. Control Flow Integrity (CFI)

Some works enforce CFI instead of or in addition to iso-
lation, through runtime software or hardware checks, thereby
defeating control-flow attacks. RECFISH [14] inserts checks
on function calls/returns and maintains a separate MPU-
protected return stack. WARduino [66] and aWSM [12] lever-
age WebAssembly sandbox to provide control- and partial
data-flow integrity, and the latter leverages MPU for bounds

checking. pRAI [67] stores a list of possible return addresses
in Flash memory and verifies returns against them. CaRE [68]
leverages ARMvS-M TrustZone to accelerate shadow stack
operations, whereas Silhouette [69], Kage [70] and SuM [71]
achieve the same with MPU and unprivileged memory access
instructions. Sherloc [72] exploits hardware tracing buffers
that were intended for debugging instead of a shadow stack.

However, their applicability in microcontroller consolida-
tion is limited, because they (1) sometimes do not provide
isolation, (2) insert run-time checks that bloat execution la-
tency, (3) cannot be linked against third-party binaries without
breaking integrity, and (4) may require customized toolchains
or hardware that is not always available in a production setting.

E. Microcontroller Ecosystem Idiosyncrasies

Different from regular application engineering practices, the
microcontroller development ecosystems have the following
idiosyncrasies: (1) the certified compilers like IAR [73] cannot
be customized, (2) the compilers may generate proprietary
or esoteric object formats, (3) the linkers may not support
sophisticated object symbol manipulations, (4) the debuggers
may only support the proprietary executable formats, (5) the
toolchain always assume bare-metal, freestanding environ-
ments.

These idiosyncrasies render researches involving toolchain
or workflow customization less useful in practice, and the
FVM must therefore account for these factors and stay fully
compatible with the current ecosystem.

F. Threat and Task Model.

Threat Model. In FVM, we assume a compromised or faulty
protection domain (VM) always tries to disrupt others, and
such behavior must be confined. Spatially, it attempts integri-
ty/confidentiality breaches by unauthorized memory or 1/O
accesses. Temporally, it tries to deny CPU availability to lower-
priority domains by executing a dead loop.

Task model. The FVM system has two groups of threads:
native process and VM. Native process threads always have
higher priorities than VM threads, and are scheduled with
Fixed-Priority Round-Robin (FPRR). VM threads are sched-
uled by their respective guest RTOS schedulers when no native
process threads are running.

ITII. FVM DESIGN

The main goal of FVM is to enable practical virtualization-
based consolidation on commodity microcontrollers. The de-
tailed goals include:

G1: Low execution latency. To cope with low latency re-
quirements of the original firmware, the system opera-
tions and interrupt responses in the VM must exhibit low
overheads and high predictability.

Small memory footprint. To make efficient use of
limited memory, the data structures must be compact and
the memory allocation must be flexible.

Inter-VM isolation. To ensure security and reliability,
the VMs must be confined spatially and temporally to
stop the propagation of faults and compromises.

G2:

G3:

G4: Ecosystem compatibility. To be practical, the system
must be compatible with the microcontroller ecosystem,
including architectures, toolchains, RTOSes, workflows,
and developer mental models.

A. Virtualization Architecture Overview

As shown in Figure 1, we base the entire virtualization
framework on a microkernel that hosts other components as
processes. A type II hypervisor manages the guest VMs,
within which two cooperating threads emulate a bare-metal
vCPU. The lower-priority thread (USR) is responsible for
executing all tasks of the guest RTOS, while the higher-priority
thread (VCT) handles interrupts and switches task context by
modifying USR’s context.

Compared with a type I hypervisor design, this choice offers
several benefits, including (1) a smaller Trusted Computing
Base (TCB), (2) a cleaner separation of policy and mecha-
nisms, and (3) supporting lighter-weight native processes in
complement to VMs.

IDE Init ISR Linker
Project Code Stubs Script
IDE Init Hook Linker
VMM Project Code Stubs Script
Project)
Config Native IDE Cfg Thread IPC
Project | |Header| | Stubs Stubs
Process
Virtual II:_’E Cfg Hypercall
\ Project | |Header Stubs

Fig. 2: FVM composer workflow. Only the major artifacts generated
are shown.

To simplify consolidation workflow, a system composer
shown in Figure 2 generates the memory layout, boot-time
initialization code, configuration headers and linker scripts. It
also produces the Integrated Development Environment (IDE)
projects to integrate seamlessly with the toolchain ecosystem.

B. Microcontroller-Specific Microkernel

To support FVM, we propose a capability-based microkernel
tailored to the microcontroller architectures. Notably, it makes
the following design decisions:

Exposing microkernel thread context to user-level. The
context switches in RTOSes often employ interrupt vectors
to manipulate the registers of the background execution. To
eliminate the need for a dedicated system call [74] for such
modification, we enable the kernel to save the USR context
inside the VM user space instead of the kernel space, so that
the context can be modified by VCT directly (G1). However,
two security challenges must be overcome to prevent VM
escapes: ensuring valid memory access and verifying sensitive
register integrity (G3). To this end, we (1) make sure the
memory region falls within the physical memory to allow safe
kernel access, and (2) insert checks on kernel context restore

path to correct illegal sensitive register (e.g. Cortex-M’s LR
or RISC-V’s mstatus) values.

Eliminating kernel object alignment requirements. To make
efficient use of limited memory, the kernel objects alloca-
tion must be flexible and economical. Notably, MPUs do
not perform virtual-to-physical address translation, but do
not impose page size and alignment restrictions as Memory
Management Units (MMUSs) do, either. In these lights, we
employ a fine-grained kernel memory allocator rather than
a paged allocator, to capitalize on the absence of page size
and alignment restrictions. It eliminates the artificial alignment
constraints often imposed by other microkernels, minimizing
external memory fragmentation (G2). The kernel memories are
not tracked in pages but rather in kernel memory capabilities,
which corresponds to permission to create kernel objects
in a memory segment. In this fashion, the kernel memory
management policies are also exported to the user-level.

Making in-kernel memory management optional. Given
that microcontroller systems tend to statically allocate every-
thing at boot-time, we forgo memory retyping and instead
maintain a predetermined boundary between kernel and user
memory (G2). Furthermore, we observe that memory access
permissions are also rarely modified at run-time. When this is
the case, the system composer generates the MPU tables for
all processes (G2) and store them in read-only flash memory
(G3), and instructs the kernel to exclude memory management
once and for all. This further reduces the memory footprint
as well as the attack surface of the kernel (G3). Similar
principles can also improve memory management performance
in microprocessor-based systems, though this lies beyond the
scope of the paper.

Simplifying in-kernel scheduling facilities. In the light of
Mixed-Criticality Scheduling (MCS), modern microkernels
abandon traditional threads for separate scheduling and execu-
tion contexts. Scheduling contexts hold budgets and policies,
while execution contexts store thread register contents. This
separation enables flexible policy and subsystem coordination
with managed interference. However, the scheduler hot-path
now involves both scheduling and execution context objects,
increasing overhead for validity checks and data structure op-
erations. Some systems [75] go even further to encode priority
as a vector, storing all subsystem scheduler scalar priorities in
the scheduling context to avoid priority flattening. In cases
where priorities don’t flatten, preemption decisions require
comparing all subsystem priorities, adding more overheads.
Though these overheads don’t introduce substantial latency
on high-performance processors where cache misses dominate
latency, it does become a significant factor on microcontrollers
that operate at a rate commensurate to their memory.

In FVM, we revert to the traditional thread concept and
implement a FPRR policy in the kernel similar to most
RTOSes. This policy is not a full scheduler: we keep room for
bandwidth servers by removing implicit budget replenishes,
and each subsystem scheduler now explicitly replenishes its
threads’ budgets, limiting the interference. If the priorities
can be flattened to match the in-kernel FPRR, latencies are
minimal, which is often the case for microcontrollers (G1).

Otherwise, we bypass the kernel policy by manually placing
inactive servers on a priority lower than the idle thread and
currently active servers on higher priorities, allowing user-
level policies to take full control. To speed up the operation,
our priority change system call accepts up to two thread
capabilities and can update them simultaneously (G1). The
trade-off here is to optimize for responsive handling of com-
mon scenarios, while accepting an increase in latency for the
complex systems that require more controlled interference than
absolute minimal latency.

In FVM, the in-kernel FPRR policy is directly in charge of
the native processes which provide minimal latency, while the
user-level hypervisor scheduler is in charge of the VMs that
can tolerate more overhead.

Hypercall Functionality

hyp_int_ena Enable virtual interrupts.

hyp_int_dis Disable virtual interrupts.

hyp_vct_phys Register a virtual vector with a physical vector.

hyp_vct_evt Register a virtual vector with an event source.

hyp_evt_add Allow this VM to send to an event source.

hyp_vet_Ick Lockdown vector mappings and event source permissions.
hyp_vct_wait Suspend the VM until future vector activation.

hyp_evt_snd Send an event to an event channel.

hyp_wdg_clr Start or clear the virtual watchdog.

TABLE I: FVM hypercalls. Sensitive configurations can be locked
down with hyp_vct_Ick to prevent further modifications. This guar-
antees security as the boot code for each VM is stored in read-only
flash.

C. Type II Paravirtualizing Hypervisor

The type II hypervisor architecture lies on top of the
microkernel to support the guest VMs. The hypercalls are
shown in Table I. It performs:

CPU virtualization. Instead of pairing each guest thread
with a dedicated microkernel thread, as is commonly done
in microkernel-based virtualization, we assign all guest tasks
within a VM to a single USR thread, and assign all guest
interrupt handlers within a VM to a single VCT thread.

Compared with the traditional solution, our design (1) elim-
inates the need to allocate extra microkernel threads (G2),
(2) enables user-level guest thread switching without kernel
intervention (G1), and (3) avoids the semantic mismatch
between the guest RTOS and microkernel scheduler, which
eliminates semantic translation and prevents the resulting
execution amplification that happen in [7] (G1).

Compared to Xen [20] which uses one thread per vCPU,
our design does not incur End-Of-Interrupt (EOI) atomicity
issues. Thus, we avoid making EOI hypercalls on virtual
interrupt return paths (G1) or writing complex critical region
stack fixup code in assembly (G4).

Interrupt indirection. When a physical interrupt arrives,
the microkernel unblocks the hypervisor interrupt indirection
thread. This thread then searches for registered VMs and
injects virtual interrupts into them by unblocking their VCT
threads. To use this mechanism, each VM must first call
hyp_vct_phys(phys_id, virt_id) to correspond one of its
virtual interrupt sources with the physical interrupt. They
must then call virt_vct_set(virt_id, vct_ptr) to configure the
handler and hyp_vct_Ick() to lockdown virtual-to-physical

mappings. Finally, they must enable interrupts by calling
hyp_int_ena().

In this design, a privileged DomO (as in Xen [20]) is not
needed since the VM boot code is burned into read-only Flash
(G3), and each VM is forced to execute it upon booting. When
this is the case, the mappings will remain constant even if
the VM compromised later. This model assumes discretionary
access control where each VM configures its interrupts to
align with the traditional microcontroller development mental
model, while leaving room for mandatory access control when
the boot code for all VMs is under the control of a single team.

Device management. FVM diverges from traditional virtu-
alization by not performing device virtualization. Instead, it
passes peripherals through to the VM directly, as they typically
do not share peripherals (G4). It is however possible to
allocate dedicated native processes or VMs to manage devices,
which can then act as a device manager for other VMs (G3).
DMA and Ethernet are typical examples: the mismanagement
of DMA may breach spatial isolation, while the sharing of
Ethernet connectivity provides network access for all VMs.

Event passing. Event sources are similar to physical interrupts
in that they also trigger virtual interrupts. They come from
VMs and native processes to achieve inter-VM and VM-
process communication. Event source setup follows is similar
to physical interrupts, and the primary difference is using
hyp_vct_evt(evt_id, virt_id) for registration instead. The
event mappings are also locked down by hyp_vct_Ick(), which
prevents further modifications (G3). The VM can then send
events to authorized sources through the hyp_evt_snd(evt_id)
hypercall.

VM scheduling. FVM employs a Fixed Priority Round-Robin
(FPRR) scheduler for scheduling VMs. When a guest VM
has no runnable threads, it calls suspends hyp_vct wait() to
suspend its execution until further virtual vector activation,
mirroring the behavior of the WFI or WFE instructions in
real hardware. When a suspended VM receives a virtual
interrupt, it is immediately resumed, and will preempt the
current one if it has a higher priority. If a VM does not
suspend itself exhausts its allocated budget, the round-robin
mechanism will select the next VM for processing. This design
deliberately trades interrupt batching efficiency in favor of
achieving an absolute minimum latency, thus ensuring real-
time responsiveness (G1).

Fault handling. To address faults within VMs, a hypervisor
fault handling thread runs at the highest priority. When a
fault occurs, this thread unblocks and invokes a customizable
handling hook, within which the user can reboot the VM or
take other actions (G3). To avoid potential deadlocks or infinite
loops from bugs within the VM, FVM also provides virtual
watchdogs, similar to those found on physical microcontrollers
(G3). This is achieved through the hyp_wdg_clr() hypercall,
which initializes the watchdog upon the first call and feeds the
dog upon subsequent calls.

D. Native Processes

The type-II design enables the coexistence of lighter-weight

native processes alongside VMs, similar to KVM-based' so-
lutions. The native processes can be used to execute timing-
sensitive portions of interrupt “bottom-halves” before passing
them to the VM through events. Alternatively, when a total
code rewrite is feasible, they can power the entire application,
and FVM hypervisor can be stripped down to just the fault
handling thread, significantly minimizing memory footprint.
This enables developers to build even lighter weight systems
for extremely resource-constrained devices.
Process initialization. Typical microcontroller toolchains gen-
erate images that are directly executed from persistent on-
chip Flash memory. During the boot-up, the initialization code
copies the data section (GCC .data, ARMCC .rwdata) from
its Flash load address to the RAM run-time address and clears
the zero section (GCC .bss, ARMCC .zidata). This is distinct
from Linux-based systems where the kernel is responsible for
such initialization before the control transfers to the program.
In certified toolchains such as ARMCC and IAR, the initial-
ization code and segment details are proprietary. To support
them without digging into the obscurity, we masquerade each
process as a “bare-metal” image and ensure that no thread can
run until the process has been initialized (G4). To achieve this,
we identify the highest priority thread within each process and
set up the main() function to call it. We then configure the
highest priority thread to start from the initialization code entry
and the stack intended by the linker for the main() function.
This results in a “bare-metal” image where the main() function
runs the highest priority thread, mimicking a real bare-metal
image. The key finding is that the highest priority thread must
be the first to run within each process, initializing the process
before all other code runs.

This design has an unexpected benefit: when a native
process or VM faults, the FVM does little recovery work
as reinitialization is performed by itself, ensuring bounded
interference to other protection domains and avoiding denial-
of-service through repeated faulting (G3).

Event sending. To communicate with the VMs, the threads
within native processes can also send to event sources to inject
virtual interrupts into the VMs, or block on signal endpoints
that the VMs can send to.

Latency-sensitive interrupt bottom-halves. In traditional
virtualization schemes, all virtual interrupts must be indirected
by the hypervisor, which increases VM interrupt latency. As
a consequence, these solutions are forced to move latency-
sensitive portions of the VM interrupt “bottom-halves” into
kernel space, which can compromise kernel integrity.

In FVM, the native processes however do not need this
indirection and can receive interrupt activations directly from
the microkernel. This creates a confined space with less in-
terrupt latency than the VMs, and is ideal for latency-sensitive
portions of interrupt “bottom-halves” (G1). The interrupts
can be processed in native processes first before triggering
events which the hypervisor will translate to virtual interrupt

'Some sources classify KVM as type-I, but we classify it as type II because
it (1) relies on Linux drivers, (2) is separately loadable as a kernel module.

injections. The data associated with the interrupt activations
can be passed to VMs through the use of shared memory.
This design also has an unexpected benefit: when the same
interrupt source carries two or more service dataflows that have
different criticality (i.e. Ethernet or USB packets), the native
thread can act as a filter that drop or postpone packets ac-
cording to customizable user-level policies, achieving flexible
differentiated interrupt handling [76] (G1, G3).

Microcontroller #1 Microcontroller #2

Appl App2 App3

RTOS1 g RTOS2 g

(0] (0]

0 0

System = System =

Driver o Driver o

< <

e e

ISR - ISR N

Appl App2 App3

0Ss1 0Ss1 0S2 8 8

= N

Drvl Drvl Drv2 1S

Hypervisor / DMA Mgmt

HKernel / Essential System Driver

ISR Stub

Fig. 3: Example showing two microcontrollers consolidated as
one. The first microcontroller has two applications and the second
one has one application, and each of them has their respective
RTOSes, drivers and ISRs. In the consolidated microcontroller, all
applications are confined in their own VMs alongside their drivers
(latency-insensitive parts of “bottom-halves”), and the ISR stubs
(“top-halves”) has been moved to the kernel-level. The ISR routines
(latency-sensitive portions of the “bottom-halves”) are moved to
native processes, which has lower interrupt latencies than the VMs
but are still confined.

E. Consolidating Bare-metal Code

To consolidate bare-metal code that runs on different micro-
controllers using different RTOSes and frameworks, the key
components must be identified, and multiple porting strategies
may be applied. As shown in Figure 3, we first separate the
entire code base into low-level code that interacts directly with
hardware peripherals, and higher-level code that relies on low-
level code. The higher-level code including applications and

middleware typically remains unaffected by consolidation and
falls outside the scope of discussion. We then separate the low-
level code into drivers and RTOSes, each requiring distinct
porting strategies to facilitate successful consolidation.

Porting drivers. As a new microcontroller is chosen as the
consolidation target, all legacy drivers must be rewritten to
fit it while maintaining compatibility with the higher-level
code (G4). Most peripherals can be assigned to dedicated
VMs as the original firmwares share no peripherals by nature.
Peripherals that act as bus masters such as DMA must be
managed by the hypervisor or trusted VM proxies (G3).
Common routines such as the interrupt controller and system
timer initialization must be moved to the microkernel.

The most significant hurdle in porting drivers is the latency-

sensitive portion of it. To keep latency low, we place only the
interrupt flag clearing routines, which cannot be completed
at the user-level, into the kernel interrupt handlers (G1), and
these are the “top-halves” (ISR stubs). Meanwhile, latency-
sensitive portions of the “bottom-halves” (ISR bodies) are
moved to native processes, which then pass the interrupts
to VMs that host latency-insensitive portions of the “bottom-
halves” (within the VMs). Evaluations show that this exhibits
an overall interrupt latency comparable to the bare-metal
systems.
Porting RTOSes. The porting of RTOSes involves (1) replac-
ing its tick timer with a virtual one, (2) replacing interrupt
enable/disable routines with hypercalls, and (3) porting its
thread context switch code.

To refit the tick timer, we register its original timer ISR
as a virtual timer interrupt, and configure the hypervisor
to periodically inject interrupts. Supplanting interrupt dis-
able/enable is not as straightforward, because replacing them
with hyp_int_dis() and hyp_int_ena() introduces hypercalls
into all RTOS functions that disable interrupts, causing high
overheads. Instead, we provide a pair of library functions,
virt_int_mask() and virt_int_unmask(), which mask and
unmask the VCT virtual interrupt response without stopping its
injection. The virt_int_mask() sets the int_mask flag, which
is detected by VCT when it unblocks. The VCT then sets
a int_pend flag and ignores all incoming interrupts. When
virt_int_unmask() is called, int_mask is cleared, and VCT
is signalled to process pending interrupts if the int_pend flag
is set. This reduces the interrupt enable/disable overheads to
that of the bare-metal (G1).

Interrupt context switch code porting is simple because
UsR’s thread context is exposed to VCT, which allows register
manipulation to be written entirely in C instead of assembly,
eliminating the most architecture-specific and error-prone as-
pects of it (G4). This is in stark contrast to Xen [77], where
such code must be written in assembly. In cases where context
switches do not involve interrupts, the original code can be
leveraged with minimal effort, within which only interrupt
enable/disable operations need to be replaced.

FE. System Composer

We introduce a system composer for FVM to simplify the
setup process. The composer takes an XML description file

that outlines the toolchain, compiler options, and memory
requirements for each native process or VM. For each VM, you
can also specify the RTOS that it intends to run. The composer
then produces all necessary configuration files, IDE projects/-
makefiles, and automatically ports the RTOSes for VMs. This
composer is designed to be out-of-the-box compatible with
both proprietary and open-source bare-metal toolchains that
allow custom linker scripts and generate binary images, which
applies to virtually all toolchains.

Configuration generation. The generation process begins
by reading memory requirements from the description file
to allocate memory for native processes and VMs, as well
as reserve space for the microkernel and hypervisor. Other
settings such as priorities and timer tick intervals are also
extracted from the description file. With such information,
configuration headers are generated for the microkernel and
hypervisor, detailing kernel object allocation steps, memory
trunk addresses, and other settings. The allocation of memory
trunks needs to take MPU region restrictions into account,
which we discuss in §IV.

Project organization. To seamlessly integrate with the bare-
metal ecosystem, we masquerade each system component (the
kernel, hypervisor, native processes and VMs) as individual
“bare-metal” projects. For each component, the IDE projects
including configuration headers, user-modifiable hooks, and
custom linker scripts are created. Compiling each project pro-
duces native executables and raw binary trunks (.bin or .hex)
that are transcribed into data arrays later. This strips away
all potentially conflicting library symbols without requiring
executable interlinkability between projects. The arrays are
then mapped to fixed addresses as raw data in the microkernel
project to create a combined system image. These steps make
no assumptions beyond the core functionality of the toolchains,
ensuring compatibility across all of them (G4).

In addition, this also allows to choose different toolchains
for different projects: certified toolchains can be used for
critical components like the kernel and hypervisor, while open-
source alternatives can be leveraged for less critical VMs.
This eliminates the need to switch compilers when the original
projects employ different ones (G4).

Native debugging support. For a consolidated system, ef-
fective interactive debugging measures are a must. However,
proprietary embedded debuggers only recognize their own
symbol format, as well as assuming a “bare-metal” microcon-
troller. Debugging the microkernel is straightforward since its
project produces the final system image. However, debugging
other protection domains can be challenging due to missing
symbols. To overcome this, we capitalize on the “debug
without download” feature which all embedded debuggers
support, as they are designed to peek running microcontrollers
in the field (G4).

We download the system image from the microkernel
project first, and then launch a debugging session from the
target project without performing the download. The debugger
loads symbols directly from the toolchain-specific executable,
while the actual running binary remains the system image. In
the physical address space of a microcontroller, the symbol

locations of project will always coincide with the system
image, allowing the debugger to run flawlessly. The debugger
will suspend execution upon the main() function of the project,
mimicking a bare-metal debugging session. From there, actual
debugging can commence.

IV. FVM IMPLEMENTATION

hyp_int_ena() call. No further change beyond the context
switch code is required.

Listing 1: Assembly Listing 2: Transcribed C

Chip CPU Flash/RAM Toolchain RTOS
STM32L071CBT6 | CMO+ 128K/20K ARMCC/GCC | FreeRTOS/RMP
STM32F405RGT6 | CM4F | 512K/192K | ARMCC/GCC | FreeRTOS/RMP
STM32F7671GT6 CM7F IM/512K ARMCC/GCC | FreeRTOS/RMP
CH32V307VCT6 RV32 192K/128K GCC FreeRTOS/RMP

TABLE II: FVM implementation combinations.

To demonstrate the general applicability of FVM, we carry
out implementations across four popular chips of three com-
mon architectures, two industry-standard toolchains, and two
open-source RTOSes, for a total of seven combinations shown
in Table II.

We believe that the diverse combinations effectively demon-
strate the flexibility and applicability of FVM.

A. FVM for ARMv6-M: the Minimal

At the lower end, we choose the STM32L071CBT6 featuring
128KiB Flash and 20KiB RAM, paired with a MPU-enabled
ARMv6-M Cortex-M0O+ core @ 32MHz. This is a extremism
proof that virtualization can be technically possible on even
the most constrained hardware. In practice, a sensible Cortex-
MO+ choice would be similar to STM32GOBIRET6, which
houses 512K/144K while remaining sub-$1.

Memory management. The Cortex-M0+ MPU has 8 regions
with power-of-2 sizes, where each region’s base address must
align with its size. Additionally, each region has 8 subregions
that can be individually enabled or disabled. For example, we
consider a memory segment with base address 0x20000000
and size 0x600. Its size is not a power-of-2 and would have
required two regions; when subregions are leveraged, a single
region with base address 0x20000000 size 0x800 will suffice
with its two tailing subregions disabled. he system composer’s
static region allocation algorithm is similar to that of [7], which
tries to minimize the number of regions required for a given
memory map by considering both regions and subregions. It
works by finding the smallest power-of-2 region size, deciding
on the base address, leveraging subregions when possible, and
recursively mapping residual segments until all are covered.
When it runs out of regions, an error is reported.

The Cortex-MO+ faults upon memory access permission vi-
olations, but does not provide address information. This makes
the dynamic region swapping algorithm in [78] inapplicable,
and there’s little additional point to keep the in-kernel memory
management facility. Thus, we disable it and store generated
MPU protection tables in read-only Flash.

RTOS porting. We port two open-source RTOSes, FreeR-
TOS and RMP, to the FVM. We registered their orig-
inal timer interrupts to the virtual timer source using
virt_vct_set(), and replaced their interrupt disable/enable calls
with virt_int_mask() and virt_int_unmask(), respectively.
We also replaced system initialization code with a simple

PendSV_Handler PROC void VCT_PendSV_Handler(void) {
MRS RO, PSP unsigned long:x SP;

LDR R2, =pxCurrentTCB SP = USR_REG->Reg.SP;

STR RO, [R2]

STMIA RO!, {R4-R7} #(——SP) = USR_REG->Reg.R4;
MOV R4, RS

#(——SP) = USR_REG—>Reg.R11;
STMIA RO!, {R4-R7} #(=—SP) = USR_REG->Reg.LR;
PUSH {R3, LR} #pxCurrentTCB = SP;

BL vTaskSwitchContext vTaskSwitchContext ();

POP {R2, R3} SP = xpxCurrentTCB;

LDR RO, [R2] USR_REG—>Reg.LR = #(SP++);
MOV R1, RO USR_REG->Reg.R11 = #(SP++);
ADDS RO, RO, #16 USR_REG->Reg .R10 = #(SP++);
ILDMIA RO!, {R4-R7} USR_REG->Reg.R9 = #(SP++);
MOV R8, R4 USR_REG->Reg.R8 = #(SP++);
LDMIA R1!, {R4-R7} USR_REG->Reg.R4 = #(SP++);
MSR PSP, RO USR_REG->Reg.SP = SP;

BX R3 return;

ENDP }

Porting FreeRTOS context switch assembly is straightfor-
ward as it relies solely on the PendSV_Handler() software
interrupt triggered by the portYield(). We translate the assem-
bly vector (Listing 1) to C (Listing 2), and register it with
the VCT. The resulting C code is simpler than the assembly
due to Cortex-MO+’s not supporting LDMIA on high registers
R7-R11.

The RMP context switch code additionally included an
assembly snippet that switches context without triggering the
PendSV interrupt. To integrate it, we replaced its CPSID and
CPSIE with virt_int_mask() and virt_int_unmask() calls,
respectively. We fitted this snippet to the FreeRTOS as well to
improve its performance.

Sensitive register fixes. We notice that the LR stores informa-
tion about where an interrupt would return, with OxXFFFFFFF1
indicating HANDLER mode (kernel-level) and OxFFFFFFFD
indicating THREAD mode (user-level). Hence, malicious LR
modifications by VCT can lead to VM execution with kernel
privileges, and we defeat this by forcing LR to OXFFFFFFFD
upon interrupt exits.

System composer. Cortex-M0O+ is supported by various
toolchains including open-source GCC and clang as well as
proprietary certified Keil uVision and IAR. We choose GCC
and ARMCC given their high popularity. We employ Makefile
in combination with GCC and Keil uVision in combination
with ARMCCto reflect typical usage patterns found in real-
world projects.

For Makefile-GCC, we use the GCC syntax .S assem-
bly files, generate .Id format linker scripts, and create sub-
Makefiles for the microkernel, hypervisor, native processes,
and VMs. A top-level makefile will invoke the sub-makefiles
to produce the final system image. This process is quite
straightforward due to the openness of the Makefile format.

Things are more complicated for Keil uVision-ARMCC, as
the .uvproj project format is proprietary and and no formal
description of it is publicly available. We experimented on
different project structures and build options to reverse en-
gineer the format, which turned out to be a XML file that

contains the build options and references the source files. In
this light, we use the ARMCC syntax .asm assembly files,
generate .Sct format scatter file (linker script equivalent), and
create the .uvproj project the microkernel, hypervisor, native
processes, and VMs. The Keil uVision also supports a .uvmpw
workspace format that could hold multiple .uvprojs so that
they can be compiled together with a single click in the IDE.
We again reverse-engineered this format to reflect the correct
build sequence for our system.

B. FVM for ARMv7-M: the Mainstream

The ARMv7-M adds FPU and DSP instructions to the base
ARMv6-M instruction set, and also generates precise fault
addresses. We selected the 168MHz STM32F405RGT6 that
has 512KiB Flash and 192KiB RAM to represent the Cortex-
MA4F, and the 216MHz STM32F767IGT6 1MiB Flash and
512KiB RAM to represent the Cortex-M7F.

The Cortex-M4F is slower but more common, while the
dual-issue Cortex-M7F is more performant but rarer. Addi-
tionally, the Cortex-M7F features double precision FPU and a
cache, which are absent in the Cortex-M4F. Though ARMv7-
M chips are significantly faster than ARMv6-M ones, we don’t
detail the basic porting as it remains similar. We focus on
fault handling and FPU management here, which are unique
for ARMv7-M.

Fault handling. ARMv7-M generates precise fault addresses
for memory access permission violations, which allows us
to implement dynamic region swapping similar to [78]. This
treats MPU table as a software-filled TLB, which kicks out
temporarily unused memory segments when regions are used
up. However, the processor automatically pushes and pops
registers (RO-R3, R12, LR, PC, xPSR) to the user-level
stack upon interrupt entry and exit. When access permission
faults are caused by such stacking, the BFSR or MMFSR
containing the faulting address is not updated, and the regions
cannot be swapped in due to this reason. To avoid intangible
stack-related faults, we ensure the stack is always allocated
on a memory segment retained in MPU regions, regardless of
swapping. Other faults are handled similarly to the ARMv6-M:
we restart the process as always.

FPU management. The Cortex-M4F and Cortex-M7F has
identical FPU registers despite that the latter support double-
precision. Their FPU context switching is hence the same from
a system standpoint.

The FPU has two unique features: automatic stacking
(FPCCR.ASPEN) which pushes FPU registers to the user-
level stack upon interrupts if FPU is DIRTY, and lazy stacking
(FPCCR.LSPEN) which postpones such pushing until FPU
is accessed during a context switch. The former minimizes
interrupt latency, while the latter avoids excessive pushes when
context switches are absent. All threads start with an INITIAL
FPU indicating that they have never tainted it. For optimal
performance, we enable both features and skip FPU context
switches when the current and next threads both report an
INITIAL FPU.

When automatic stacking is enabled, touching the FPU
clears LR.[4] upon interrupt entry and interrupts will stack the

FPU registers. However, since the USR’s LR can be modified
by user-level in parallel to become INITIAL when multiple
CPUs exist, and the LR observed by the microkernel is
untrustworthy. If LR is used as a DIRTY indicator, the DIRTY
FPU won’t be cleaned up when switching to an INITIAL
thread; this can leak previous FPU context. To this end, we
treat the USR’s FPU context as always DIRTY and reinitialize
it when we switch to an INITIAL thread.

When lazy stacking is enabled, it occurs when the micro-
kernel saves the FPU context into the thread kernel object. A
malicious thread may set its stack pointer to invalid addresses
to trigger faults in kernel-space. To this end, we ignore lazy
stacking errors (LSPERR and MLSPERR); any malicious
FPU stacking attempts only harm the attackers.

C. FVM for RISC-V: the Emerging

The RISC-V is an emerging architecture that targets sce-
narios spanning from cloud computing to embedded. Its
openness makes it suitable for microcontroller designs that
require flexibility. We choose the 144MHz CH32V307VCT6
(RV32IMAFC core) that has 192KiB Flash and 128KiB RAM
to represent RISC-V. This port proved the most challenging
and we elaborate on the unique difficulties below. In terms
of RTOS porting and system composer, it is however similar
to the Cortex-M.

Nonstandard hardware caveats. The RISC-V is an open
architecture and manufacturers are free to implement their
own flavor despite the ratified standards. Unfortunately, this
flexibility is not without downsides. Take the CH32V307VCT6
as an example, it (1) is missing the mandatory machine mode
timer (mtime), (2) does not generate precise fault addresses,
(3) has a modified interrupt vector table, (4) does not disable
machine-mode interrupts upon entry (mstatus.mie remains
set), (5) does not block user-level accesses when all Physical
Memory Protection (PMP; RISC-V MPU equivalent) entries
are “off”, and (6) adds user-level accessible global interrupt
control CSRs (gintenr and intsyscr) that compromise tempo-
ral isolation.

We began the port consulting ratified manuals, only to find

out that we’re very wrong. We fix these issues by (1) providing
custom timer routines and interrupt vector tables, (2) carefully
placing all vectors at the same priority so that they cannot
preempt each other, (3) sacrificing one PMP entry to disable all
background user-level accesses, and (4) using a binary scanner
to make sure no code access gintenr and intsyscr.
Memory region allocation. The RISC-V PMP is unique
in that it supports both Naturally-Aligned-Power-Of-Two
(NAPOT) and Top-Of-Range (TOR) modes. In NAPOT mode,
a single entry defines a power-of-2 aligned memory segment
similar to the Cortex-M MPU. The TOR mode however
allows declaring unaligned segments using two entries, each
specifying the base and limit address. To use the regions
efficiently, our algorithm merges contiguous segments, and
checks if the merged segment can fit into a NAPOT entry;
if not, we use two entries working in TOR mode instead.
Due to the absence of precise PMP faults, the dynamic region
swapping algorithm [78] cannot be used.

FPU management. The RISC-V FPU management is even
more complex than ARMv7-M, featuring an additional CLEAN
status indicating whether the FPU has been accessed since the
last context saving. This allows skipping FPU context saving if
the FPU remains untouched since last save. To take advantage
of this feature, we follow the designer’s intention and only save
thread FPU contexts when they’re DIRTY, and then mark the
FPU as CLEAN again to prevent excessive saves. All threads
start with an INITIAL FPU status until their first FPU access
makes them DIRTY.

However, the USR FPU status reflected in mstatus is
untrustworthy because VCT can arbitrarily modify it. Instead
of treating USR’s INITIAL FPU statuses as DIRTY like on
ARMv7-M, we treat them as CLEAN, allowing the microkernel
to reinitialize the FPU upon switching to an initial thread while
skipping context saving for USR. This way, malicious VMs can
only hurt themselves by losing their own FPU context when
launching an attack.

V. EVALUATION

In our evaluation, we examine the following key questions
that directly correspond to our goals listed in §III:

Q1: How much processing overhead does the FVM intro-
duce and is this acceptable?

How much memory bloat does the FVM impose and
is this acceptable?

What changes to a RTOS is needed to port it to the
FVM and is this acceptable?

Can the FVM recover from VM faults or attacks and
reboot the affected VMs individually?

To address these questions, we perform a comprehensive
benchmark on four chips introduced in §1V. In all benchmarks,
we run two native processes alongside one VM. We use
GCC 13.2.1 and ARMCC 6.3.1 for compilation with the -O3
compiler flag, as well as FreeRTOS 9.0.0 and RMP 0.2.7 for
virtualization evaluation. The Cortex-M0O+ uses an -Os size
optimization flag instead, which better reflects the real-world
scenarios.

Each benchmark is repeated 10000 times and we report
both the mean (average; darker bottom bar) and worst-case
(maximum; lighter top bar) values. We do not provide standard
deviation values as they are virtually invisible in graphs.

Q2:
Q3:
Q4:

A. Bare-metal Performance (Q1)

We start by benchmarking the baseline performance of
vanilla FreeRTOS and RMP using both GCC and ARMCC
toolchains, which is shown in Figure 4 and 5. ARMCC is only
compatible with the ARM architecture and thus does not apply
to the RISC-V processor.

For FreeRTOS, we measure the (1) context switch latency
(ctx), (2) notification latency (ntf), (3) semaphore latency
(sem), (4) message-queue latency msg, and (5) their respective
interrupt versions with (. ../1i).

For RMP, we measure the (1) context switch latency
(ctx), (2) mailbox latency (mbx), (3) semaphore latency
(sem), (4) message-queue latency msg, (5) bounded message-
queue latency bmsg and (6) their respective interrupt versions

Cortex-M0+ Cortex-M4
800 1F —

600 | 1t .
400 1t .
200 | 1t .

Cortex-M7
800 - 1

600 | 1t .
400 1t .
200 | 1t .

CPU clock cycles
o

F & NPNTAN 4+ & NIPANAY
& SLLE 4’@\&59\ & ELLE »,e@\@"g\

gcc armcc

Fig. 4: Bare-metal FreeRTOS performance. “ctx” is one-way context
switch overhead (taskYIELD), “ntf” is notification latency (xTas-
kNotify), “sem” is semaphore latency (xSemaphoreGive), “msg” is
message-queue latency (xQueueSend), and “.../i” are respective
interrupt latencies (...FromISR). The bare-metal performance typi-
cally falls within several microseconds, except for the Cortex-MO+
which has a low clock rate.

1000 [-Cortex-M0O+ - |-Cortex-M4 -
800 1r .
600 | 1rF E
400 1r .
200 1r b

1000 }-Cortex-M7 4
800 1r A
600 1r A
400 1r A
200 1r A

CPU clock cycles

S B SRS SSANSANSANAN N BN~ I SANJANSANGAN
foais) GO O O & G20 O O
CFESLL é’}i@‘;@‘) CEFELL foe}(\(é?o@c)

gcc armcc

« 1)

Fig. 5: Bare-metal RMP performance. “ctx” is one-way con-
text switch overhead (Thd_Yield), “mbx” is thread mailbox la-
tency (Thd_Snd), “sem” is semaphore latency (Sem_Post), “msg”
is message-queue latency (Msgqg_Snd), “bmsg” is bounded-size
message-queue latency (Bmqg_Snd) and “.../i” are respective
interrupt latencies (..._ISR). Notably, the RMP’s semaphore (“sem”)
is faster than FreeRTOS’s, but bounded message queue (“bmsg”) is
slower than FreeRTOS’s; this is due to RMP’s semaphore-centric con-
struction as opposed to the FreeRTOS’s queue-centric construction.

(.../1). RMP’s mailbox is roughly equivalent to the FreeR-
TOS’s notification as it is tied to a thread and allows to pass
light-weight messages between them. RMP’s message queues
are separated into regular unbounded queues and bounded
queues, and the latter is equivalent to FreeRTOS message
queues.

Discussion. On all architectures and toolchains, both RTOSes
perform well and almost all system operation latencies stayed
below 1000 CPU cycles. This translates to a few microsec-
onds as all processors but the Cortex-MO+ runs at more
than 100 MHz. As these results are what is achievable by
vanilla RTOSes, they represent overheads that are acceptable

1000 | Cortex-MO+ - | Cortex-M4 .
800 - 1rF —
600 - 1rF —
400 1rF T
200 1rF —

1000 | Cortex-M7 4 | RISC-V 4
800 [1r .
600 | 1r E
400 1r E
200 1rF —

CPU clock cycles
o

> QSO0 > QSO0
ST T T T

gcc armcc

Fig. 6: Microkernel basic operation performance. It is somewhat
comparable to that of both RTOSes, although it exhibits slightly
higher latencies due to the need to reprogram the MPU during
protection domain switches.

in applications that already leverage these RTOSes.

When comparing architectures, Cortex-M7F is approxi-
mately 20% more efficient cycle-wise than Cortex-M4F, which
in turn is 20% more efficient than Cortex-M0+; the RISC-
V processor of our choice is comparable to Cortex-M7F.
The performance difference between Cortex-M processors less
pronounced than their CoreMark. This might be attributed to
certain system operations that limit the dual-issue capability
of the more advanced Cortex-M7F by causing hard delays
or pipeline flushes. For most architectures, the maximum and
average does not differ much, with the Cortex-M7F being the
sole exception due to its additional cache. On the other hand,
thanks to its simple pipeline and low clock rate, the Cortex-
MO+ has almost identical maximum and average.

For both RTOSes, context switching is the fastest because
only the scheduler is involved. Message queue operations are
significantly heavier than notifications. IPC interrupt latencies
generally match their normal versions. When comparing both
RTOSes, RMP’s notification mechanism and unbounded queue
exhibit slightly less latency compared to FreeRTOS’s mailbox
and (bounded) queue. On the contrary, RMP’s bounded queue
is slower than FreeRTOS’s queue because it is implemented
with a semaphore and an unbounded queue. Other performance
figures are otherwise similar as both systems are heavily
optimized.

When comparing the two toolchains, GCC is slightly lower
than ARMCC on Cortex-M0O+ and Cortex-M4F, but achieves
parity on Cortex-M7F. This means that being compatible with
proprietary toolchains in addition to open-source ones might
have performance benefits for certain systems.

B. Microkernel Performance (Q1)

As the FVM relies on the underlying microkernel, the
microkernel performance must be benchmarked so that we can
understand other evaluations that follow. As shown in Figure 6,
we measure (1) intra-process context switch latency (ctx/1),
(2) inter-process context switch latency (ctx/2), (3) thread
migration/return round-trip latency (inv), (4) interrupt signal-

Cortex-MO+ Cortex-M4

LI B N B B B
T T T N |
T T T T T T
| T N N T I I |

©1600 | Cortex-M7 | RISC-V

(o]

o

o
T T T 1T T 11
T N T T N |
I T T |

(}‘+ (‘\6(90@@6’0"(‘\6\\ e((\\\ c,q\\ (§'+ (\6 o’e&@c’q(\‘é\\ Q}Q\) c,()\\
& & £ &
gcc armcc

Fig. 7: Virtualized FreeRTOS performance. The abbreviations in here
and Figure 9 have the same meaning as in Figure 4.

Cortex-M0+ Cortex-M4

1600
1400
1200
1000

N DO
[el=)=X=]
(==Yl

o

lock cycles

Cortex-M7 RISC-V

CPU ¢
=
N b O
[efole)
oo

1000 1F —
800 | 1t .
600 | 1t .
400 1t -
200 | = .
0

SR P~ S~ SANSANSANIAN B PN~ T~ SANSANIANAN

FO" S PGP O O Fo RO LR O O

TFESE e‘?’@@(’o@(’ TSR e?’&@?o@g

gcc armcc

Fig. 8: Virtualized RMP performance. The abbreviations in here and
Figure 10 have the same meaning as in Figure 5.

ing latency (int), (5) intra-process signaling latency (sig/1),
and (6) inter-process signaling latency (sig/2).

Discussion. The F'VM’s underlying microkernel is comparable
to the bare-metal RTOSes in terms of intra-process operations
despite its addition of capability-based security. However, in
inter-process measurements, an additional 100 cycle overhead
is imposed by MPU reprogramming operations, and this trans-
lates to less than one microsecond on all processors but the
Cortex-MO+. The microkernel has less interrupt latency than
both RTOSes, because its signal endpoint is lighter-weight
than RTOS message-passing IPCs. A signal delivers just the
activations without the message, while the messages can be
passed in shared memory when needed. Thread migration is
also provided for synchronous communication, which is twice
as fast as an asynchronous signal round-trip.

C. Guest Virtualization Performance (Q1)

To evaluate how the RTOSes perform after they have been
virtualized, we measure the same system operation latencies
as we’ve measured in bare-metal environment, which is shown
in Figure 7 and 8.

Discussion. We focus on two groups of latencies. First, the
context switch and IPC latencies between the threads. Second,

[Cortex-MO+ 7 [Cortex-M4 7]

8 [Cortex-M7 1 [RISC-V]
C 197 1L]

Normalized CPU cycles %

160 |- 1k .

140 s .

120 <5% 1F =

O Rt r vty fEroddS
X "\

&< & &o, (“6 606\ &90, &< & ((\(q (‘\6 6?50@(70"

gcc armcc

Fig. 9: Virtualized FreeRTOS performance normalized by the origi-
nal bare-metal performance that serves as the 100% baseline.

299 Fcortex-Mo+] [cortex-m4]

299 [cortex-M7 FRISCV

Normalized CPU cycles %
=
o
o

120 4 F <5% —

100 " RN &t cécé\\\\\\\\
SRR D &S S DS
NN %@" & ESLL &&&@

gcc armcc

Fig. 10: Virtualized RMP performance normalized by the original
bare-metal performance that serves as the 100% baseline.

the interrupt latencies from the virtual interrupt handler to
the receiving thread. Our results show that for both RTOSes,
the first group of latencies remains similar to bare-metal
performance. This is because a single USR thread corresponds
to all guest threads, and guest thread switching can occur at the
user-level without invoking the microkernel. However, when it
comes to the second group where IPCs originating from virtual
interrupts, the results are different. Even when we expose the
USR context to the VCT so that it can be modified efficiently
without additional system calls, the resulting latencies remain
much higher than those of bare-metal. This is due to the
fact that the virtual interrupt injection causes two kernel-level
context switches: from USR to VCT upon virtual interrupt
activation, and from VCT back to USR upon virtual interrupt
exiting. Note that these context switches are unavoidable even
if we map one guest thread to one microkernel thread.
When we normalize virtualized measurements by bare-
metal measurements as shown in Figure 9 and 10, these
observations become much more pronounced. The perfor-
mance bloat of the first group remained below 60% for
all combinations of toolchains and architectures. In a few
measurements involving more substantial guest system op-
erations, the difference is hardly noticeable, i.e. FreeRTOS’s
IPC virtualization overhead is below 5% in Cortex-M7F. The

second group shows a significant performance penalty: the
virtual interrupt latencies overheads are at least 180% of their
bare-metal counterpart and can reach up to 500% in some
cases, i.e. RMP’s semaphore interrupt latency in RISC-V.
From these results we can safely conclude that keeping
timing-sensitive portions of interrupt “bottom-halves” within
guest threads is a disaster regardless of how optimized the
virtualization infrastructure might be. Do note that this
analysis only considers the latency from the virtual interrupt
handler to the receiving guest thread; the additional latency
introduced by the hypervisor’s interrupt relaying mechanism,
which occurs when an interrupt travels from the hardware
interrupt handler to the virtual interrupt handler, has not been
accounted for yet and will be explored in our next subsection.

D. Interrupt Latency (Q1)

400 | Cortex-MO+ 1L

200

140
120
100
80
60

40
400 - Cortex-M7 |

200

140
120
100
80
60
40

Cortex-M4

T T T T
T
T T 177
| S

| RISC-V

1

Normalized CPU cycles %

T T T 7T
T N B B
T T 17T
| I S |

& & & &)
S L PO L P S L PO LS
(\\ (\\‘ve 0\((\ & \\\‘vz \\\((\ (\\ (\\%Q’ Q\(Q K\ \\\‘oe’ &

\\\
gcc armcc

Fig. 11: Native process and VM interrupt relay latency normalized
by various bare-metal FreeRTOS interrupt latencies that serve as
the 100% baseline. The “n/...” normalize native process interrupt
latency to various bare-metal FreeRTOS interrupt latencies, while the
“v/...” normalize VM interrupt relay latency to various FreeRTOS
bare-metal interrupt latencies. The abbreviations here have the same
meaning as in Figure 4.

800 |- Cortex-MO+ 1 [Cortex-M4 1

T T I |
T T T T 111
) I I I |

=
N
o
L N B |

1

800 [-Cortex-M7 1 [RISCV

wu

o

o
T
N
=
o
1

Normalized CPU cycles %
N
o

T
T T T T 117
) N I T I |

[y
N
[ele]olale)

TT T T T 17T

S & v S & 3t S & S DD
(\\& & (\\@ ((\ 6\ W 4\(0 (° Q\(ﬁ\ & (\\((\ ({‘ (&\\\\e Q\é‘ ((‘

gcc armcc

Fig. 12: Native process and VM interrupt relay latency normalized
by various bare-metal RMP interrupt latencies that serve as the 100%
baseline. The notations and abbreviations here have the same meaning
as in Figure 11 and 5.

To evaluate the real-time responsiveness of the virtualized
RTOSes, we investigate the latency overhead imposed by
FVM. Instead of showing the raw numbers, we normalize
them by various bare-metal RTOS interrupt latencies to make
a cleaner comparison, which is shown in Figure 11 and 12.
We also show the native process interrupt latency side-by-
side, which is normalized as well. For FreeRTOS, the v/ntf,
v/sem and v/msg values normalize VM interrupt relay latency
by bare-metal notification, semaphore and message queue
interrupt latencies respectively. For RMP, the v/mbx, v/sem,
v/msg and v/bmsg values normalize VM interrupt relay
latency bare-metal mailbox, semaphore, unbounded message
queue and bounded message queue interrupt latencies respec-
tively. The n/. . . values have similar meanings except that the
value being normalized are native process interrupt latencies.
Discussion. The interrupt relaying latency is generally 400%
of any bare-metal latency, and can reach as high as 800%
in some cases (v/...). This underpins the fact that even
placing latency-sensitive portions of interrupt “bottom-halves”
into virtual interrupt handlers, where the bare-metal “top-
halves” originally reside, is not a viable solution. Moreover,
keeping “bottom-halves” within guest threads becomes even
less attractive due to the extreme latency bloat: the total latency
from hardware interrupt handler to guest thread can reach over
ten times of that of the bare-metal, as seen in the case of
RMP semaphore latency on Cortex-M4F, where the combined
latency reaches 2376+1248=3624 cycles compared to just 340
cycles for the bare-metal. However, our type-II hypervisor
design shines here: we can relocate latency-sensitive portions
of the “bottom-halves” into native processes, where they enjoy
native process interrupt latency which is generally on par with
that of the bare-metal.

This effectively splits our interrupts into three sections
rather than two: the extremely sensitive “top-sections” remains
in kernel hardware interrupt handlers, simply clearing inter-
rupt flags and reenabling interrupts. Meanwhile, the “middle-
sections” can now reside within native processes, perform-
ing relatively sensitive data processing. Once the “middle-
sections” are complete, the interrupt can be reported to the
hypervisor through event channels, and the least sensitive
“bottom-sections” are then executed within the VMs. This
way, the total interrupt latency to the first application code
execution — which are the original “bottom-halves” — re-
mains mostly unaffected (n/...). Due to the fact that the
microkernel signals only contain activations but no messages,
the pure interrupt latency is actually lower than that of the
bare-metal RTOS which carries messages, and could reach as
low as 50% i.e. in the case of FreeRTOS on Cortex-M7F.
In a word, when the “bottom-halves” are moved to native
processes, the FVM has comparable interrupt latency to bare-
metal systems.

Combining subsection V-A, V-C, V-D and specific appli-
cation requirements in [79], we can safely conclude that the
virtualization latencies are acceptable in most applications that
already adopt bare-metal RTOSes.

E. Power Draw (Q1)

To perceive the processing overheads from a power draw
perspective, we measure the microcontroller (with minimum
external circuitry) 3.3V supply currents when running the
benchmark and report the average, as shown in Table III. This
exercises all systems to the fullest extent and amplifies the
difference that can be attributed to FVM.

Toolchain Test Cortex-M0+ | Cortex-M4F | Cortex-M7F | RISC-V
FreeRTOS 7.85 53.10 90.13 31.98
Gee vFreeRTOS 941 60.66 107.44 32.60
RMP 8.31 50.90 94.94 32.36
VRMP 9.51 55.62 107.12 3.04
FreeRTOS 7.93 53.69 91.03 N/A
VFreeRTOS 9.48 60.07 105.45 N/A
ARMCC RMP 826 30.03 96.64 N/A
VRMP 9.43 56.20 106.35 N/A

TABLE III: Average current (mA) when running the benchmark
nonstop. The “v...” entries represent the virtualized RTOSes.

Discussion. It could be observed that the power overheads
are mild in all cases — some 10% increase — which can be
attributed to extra CPU mode switches and enabling of MPUs.
However, this difference is only exposed when the system is
exercised, and real-world applications rarely exercise system
calls as strong as benchmarks do. Even in cases where they
do, a 10% increase is quite acceptable when compared to SFI
approaches that can cause 100% overheads on all execution,
including that of the application [12].

F. Comparison Study (Q1)

126

=
o
o

80 b
60 b

20 .

o

Normalized CPU cycles %

o

v J ¢ &
K ‘_(,\Q\ &« Kg,dl

(9

NS ~) N
O & 8
E & «

&

Fig. 13: Microkernel and virtualized FreeRTOS performance nor-
malized by that of [7], which serves as the 100% baseline. The solid
bars (“k...”) represent microkernel measurements, while the striped
bars (“f...”) correspond to virtualized FreeRTOS measurements.
The abbreviations here have the same meaning as in Figure 4 and 6;
the additional “.../s” do not use the fast context switching path.

To better understand the contributions of this work, we
compare it to the existing Composite virtualization frame-
work [7] which only requires standard MPUs. We do not
consider others [9], [41] because they either require custom
hardware that is not ubiquitous across all architectures or
use specific instruction set extensions. o make an apples-to-
apples comparison, we use the GCC version 5.4.1, and reduce
optimization to -O2 to match [7].

The normalized FVM performance results are presented in
Figure 13, where the Composite values serve as the baseline.

The microkernel inter-process context switch latency
(kctx/2), thread migration latency (kinv), inter-process asyn-
chronous signal latency (ksig/2) and interrupt latency (kint)

are normalized by their corresponding Composite kernel val-
ues. All these values are inter-process measurements and
are shown by the solid bars. Additionally, the FVM vir-
tualized FreeRTOS context switch latency (fctx), message
queue latency (fmsg) and message queue interrupt latency
(fmsg/i) are normalized by corresponding Composite vir-
tualized FreeRTOS values. These are shown by the striped
bars. To demonstrate the effectiveness of user-level context
switches, we disable the fast-path in our virtualized FreeRTOS
and perform all context switches through VCT activations.
The context switch latency (fctx/s) and message queue
latency (fmsg/s) without user-level fast-path are normalized
by Composite virtualized FreeRTOS values as well.

Discussion. F'VM microkernel outperforms Composite micro-
kernel in most operations (except for kinv, which Composite
heavily optimizes) thanks to its simplified scheduling facilities.
Among all measurements, the interrupt latency is significantly
reduced by approximately 60% (kint), which is more than
twice as fast. Despite Composite’s TCaps mechanism allowing
for direct VM interrupt delivery without hypervisor indirec-
tion, our design’s native process interrupt latency remains
superior.

Virtualized FreeRTOS measurements demonstrate that our
virtualized FreeRTOS context switch is over five times faster
than that of Composite (fctx). While message queue laten-
cies are also vastly improved (fmsg), it is somewhat less
pronounced due to the overheads associated with message
passing. This performance boost is attributed to user-level
guest context switches that don’t require microkernel interven-
tion, as well as the decoupling of guest context switches and
microkernel context switches. This could be cross-validated
by looking at the measurements with user-level fast-path
disabled (fctx/s and fmsg/s), where FVM is roughly on
par with Composite. The four fold improvement in message
queue interrupt latency (fmsg/i) can also be attributed to sim-
plified scheduling facilities. This reason is somewhat intricate:
Composite corresponds each FreeRTOS thread to a Compos-
ite thread and thus needs to translate FreeRTOS scheduling
semantics to Composite TCaps scheduling semantics. In this
translation, a dedicated scheduler thread is triggered to handle
scheduler notifications generated by the virtual interrupt vector
activation, which delays the scheduling of the guest thread.
n contrast, our system doesn’t require this translation as we
model the vCPU instead of making a direct correspondence.

Even with the Composite’s Slite user-level context switching
extension enabled [80], Composite is still slower than FVM.
Take context switch as an example, Composite-Slite virtualized
FreeRTOS has a latency of 2071 cycles on Cortex-M33F [80],
whereas FVM virtualized FreeRTOS only have a latency of 224
cycles on Cortex-M4F, despite Cortex-M33F being about 15%
more performant IPC-wise. This is due to the Composite’s
many-to-many threading model, as well as its additional cost
of synchronizing user-level scheduler states with the kernel.
Note that Slite is a user-level mechanism, so it does not
improve inter-process context switch or interrupt latency. In
a word, a straightforward FPRR scheduler is better suited for
microcontrollers with simple microarchitectures than MCS-

capable scheduling facilities; the latter would cause unac-
ceptable overhead. For a microkernel that needs to support
both microcontrollers and microprocessors, a more practical
approach would be to make MCS facilities optional and move
them entirely to the user-level, and when complex MCS
facilities are necessary, more powerful microprocessors can
be leveraged to handle the extra overhead.

G. Memory Footprint (Q2)

To understand how scalable the system is on limited micro-
controller on-chip memory, we compile each system compo-
nent and delineate their memory usage, as shown in Table IV.
We also provide bare-metal numbers including and excluding
drivers for comparison. Note that the numbers already include
all run-time created kernel objects, and both RTOSes are built
with a comprehensive benchmark that thoroughly exercises
their system calls, allowing for a practical memory footprint
to be reflected.

Toolchain | Component | Cortex-M0+ | Cortex-M4F | Cortex-M7F | RISC-V
Kernel 55.8/5.89 72.0/6.72 72.6/8.83 65.5/6.33
Hypervisor 15.9/1.86 21.5/2.28 22.0/2.50 22.2/2.45
dFreeRTOS 14.7/2.61 17.8/5.22 17.0/4.91 23.5/4.91
Gee bFreeRTOS 9.8/2.60 14.4/4.85 11.8/4.90 17.9/4.85
vFreeRTOS 10.8/2.47 14.1/4.70 14.3/4.70 14.7/4.71
dRMP 16.1/1.67 21.0/1.70 24.9/1.98 27.9/1.70
bRMP 11.4/1.66 19.5/1.68 19.6/1.96 25.2/1.68
VRMP 13.2/1.55 20.4/1.56 20.6/1.56 25.8/1.53
Kernel 55.5/5.89 95.0/6.72 94.7/8.83 N/A
Hypervisor 15.0/1.86 41.3/2.28 31.5/2.50 N/A
dFreeRTOS 12.172.58 14.2/4.98 14.6/4.88 N/A
ARMCC bFreeRTOS 7.8/2.57 11.3/5.11 10.5/4.87 N/A
vFreeRTOS 9.1/2.46 12.8/4.69 13.0/4.69 N/A
dRMP 13.4/1.64 21.8/1.65 22.0/1.95 N/A
bRMP 9.3/1.63 19.7/1.64 17.8/1.93 N/A
VRMP 11.1/1.53 20.0/1.56 20.0/1.56 N/A

TABLE IV: Memory footprints of all software components, in
kilobytes. The numbers are listed in a Flash'/RAM format, with
the first representing Flash and the second representing RAM. The
“d...” entries denote the bare-metal versions of the two RTOSes
with minimal necessary drivers, the “b. . .” entries denote their bare-
metal versions with all drivers stripped, and the “v...” entries
represent their virtualized counterparts.

Discussion. The microkernel always uses the most Flash due
to its complexity. The hypervisor is a close second as it
contains the bulk of VM scheduling, event passing, interrupt
relaying, hypercall handling, and fault handling. However, we
argue that Flash is inexpensive and abundant on microcon-
trollers, as a sub-$1 STM32GOBIRET6 has 512K Flash.

The microkernel and hypervisor uses approximately 10K
RAM, and can be easily fit into microcontrollers that have
more than 64K RAM. When the microkernel is used without
the hypervisor, the RAM footprint shrinks to about 3K, which
could fit into any microcontroller with 16K or more RAM.

The overheads for RTOSes are quite interesting. When the
footprints without any drivers (b...) are compared to their
virtualized counterparts (v...), the virtualized versions use
more Flash/RAM due to their inclusion of the paravirtualizing
library. However, when looking at the footprints with common
manufacturer-provided drivers e.g. STM HAL (d...), the vir-
tualized versions are less bloated because they do not contain
hardware drivers anymore. This means that a consolidated
system actually use less memory than the original system
combined, which reflects reduced costs.

Thanks to our simpler kernel design, when the footprints are
compared to [7], we decrease microkernel Flash and RAM
usage by 46% and 76%, and VM Flash and RAM usage
by 72% and 84%, respectively. The removal of unnecessary
kernel object alignment requirements is also a contributing
factor. Moreover, our two-thread vCPU model does not need
scheduler semantic translations, and avoids creating additional
kernel objects at runtime, which further reduces memory us-
age. n conclusion, the FVM memory footprints are acceptable
on commodity microcontrollers.

H. RTOS Porting Effort (Q3)

The FVM is a paravirtualization facility that requires modi-
fications to the guest OS or firmware. To assess the adaptation
effort on existing microcontroller code, we measure the Source
Lines of Code (SLoC) that must be modified to port both
RTOSes, as shown in Table V.

RTOS File ARMv6-M ARMv7-M RISC-V
C source +51/-23 +48/-33 +116/-38

ARMCC asm +22/-49 +16/-46 N/A

FreeRTOS +fastyield +I1T +91 N/A
GCC asm +22/-49 +16/-46 +8/-114

+fastyield +108 +87 +122
C source +49/-3 +50/-4 +101/-5

ARMCC asm +1/-45 +1/-33 N/A

RMP +fastyield +109 +91 N/A

GCC asm +1/-45 +1/-33 -115

+fastyield +106 +91 +122

TABLE V: Modifications of RTOS source, in Source Lines of Code
(SLoC). The numbers are listed in a +/- “diff” format, indicating
additions (+) and deletions (-). The fastyield entries denote the
additional user-level assembly code that accelerates guest thread
context switches.

Discussion. The modifications to the C source code are rela-
tively minor, with around 50 lines changed for both ARMv6-
M (Cortex-M0O+) and ARMv7-M (Cortex-M4F | Cortex-M7F),
and 120 lines changed for RISC-V. The RISC-V port requires
more changes due to its additional 32 registers compared
to the ARM’s 16. ompared to the SLoC of the bare-metal
RTOS hardware abstraction layers (in the case of ARMv7-
M FreeRTOS, 483 lines), these modifications only accounted
for only about 1/5 of the original code. Moreover, most
of the assembler modifications are deletions, and the error-
prone context switch code can be rewritten in C, greatly
simplifying the porting process. Notably, all these changes
are in the hardware abstraction layers, leaving the original
RTOSes untouched. When the user-level fastyield optimization
is implemented, an additional assembler code is required,
which is typically around 100 lines. We also compare the
total SLoC in the virtualized FreeRTOS HAL to [7], where
our FreeRTOS HAL includes only 283 SLoC instead of [7]’s
363 SLoC. This is because the FVM don’t need to translate
FreeRTOS scheduling semantics to the microkernel’s.

1. VM Anomaly Detection and Recovery (Q4)

To evaluate the system’s resilience to errors or attacks, we
intentionally inject references to (1) null pointers, (2) memo-
ries of other protection domains, and (3) nonexistent capabil-
ities into the otherwise correct VM logic.

Discussion. For all combinations of toolchains, architectures,
and RTOSes, FVM can detect the anomaly immediately and
reboot the offending VM without affecting the entire mi-
crocontroller, which accomplishes its design goals. However,
FVM does not defend against ROPs which does not cause
permission violations, and this can be complemented by CFI
techniques such as sandboxes [59], [12]. In is also noteworthy
that sandboxes can also be used in lieu of FVM to achieve SFI
on even legacy microcontrollers that does not feature a MPU,
at the cost of much higher execution overheads [12].

VI. CONCLUSIONS

The need to reduce costs, improve reliability and enhance
security has been driving microcontroller consolidation in au-
tomotive, industrial and commercial scenarios. To this end, the
paper proposes FVM, a virtualization framework for perform-
ing practical consolidation on commodity microcontrollers.
We optimize the FVM design towards the microcontroller
ecosystem and implement it on four chip architectures, three
industry-standard toolchains, two open-source RTOSes, for
a total of seven combinations. As the evaluation demon-
strates, FVM reduces the latency overheads down to near
zero, reduces the virtualization footprint bloat by up to 72%,
and imposes minimal effort to port existing systems to it.
We believe that FVM enables practical virtualization-based
microcontroller consolidation in automotive, industrial, and
commercial applications.

REFERENCES

[11 K. Vipin, “CANNoC: An open-source NoC architecture for ECU con-
solidation,” in IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS), 2018.

[2] “Adaptive AutoSAR. The AUTOSAR Runtime for Adaptive Appli-
cations (ARA), https://www.autosar.org/standards/adaptive-platform, re-
trieved 12/14/20,” 2020.

[3] F. Paci, D. Brunelli, and L. Benini, “Lightweight IO virtualization
on MPU enabled microcontrollers,” in Proceedings of the Embedded
Operating Systems Workshop co-located with the Embedded Systems
Week (ESWEEK), 2016.

[4] C. Morales-Gonzalez, M. Harper, M. Cash, L. Luo, Z. Ling, Q. Z. Sun,
and X. Fu, “On building automation system security,” High-Confidence
Computing, 2024.

[5]1 B. S4, J. Martins, and S. Pinto, “A first look at RISC-V virtualization
from an embedded systems perspective,” IEEE Transactions on Com-
puters, 2021.

[6] Z. Jiang, K. Yang, Y. Ma, N. Fisher, N. Audsley, and Z. Dong,
“Towards hard real-time and energy-efficient virtualization for many-
core embedded systems,” IEEE Transactions on Computers, 2022.

[7]1 R. Pan, G. Peach, Y. Ren, and G. Parmer, “Predictable virtualization
on memory protection unit-based microcontrollers,” in 24th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2018.

[8] N. Klingensmith and S. Banerjee, “Hermes: A real time hypervisor
for mobile and IoT systems,” in Proceedings of the 19th International
Workshop on Mobile Computing Systems & Applications, 2018.

[9] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtualiza-
tion on TrustZone-enabled microcontrollers? Voila!” in IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2019.

[10] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu, “Se-
curing real-time microcontroller systems through customized memory
view switching.” in Network and Distributed System Security Symposium
(NDSS), 2018.

[11] L. Zhao, G. Li, B. De Sutter, and J. Regehr, “ARMor: Fully verified
software fault isolation,” in Proceedings of the Ninth ACM International
Conference on Embedded Software (EMSOFT), 2011.

(12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

G. Peach, R. Pan, Z. Wu, G. Parmer, C. Haster, and L. Cherkasova,
“eWASM: Practical software fault isolation for reliable embedded de-
vices,” in Proceedings of the International Conference on Embedded
Software (EMSOFT), 2020.

A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer, “Protecting bare-metal embedded systems with
privilege overlays,” in IEEE Symposium on Security and Privacy (SP),
2017.

R. J. Walls, N. F. Brown, T. L. Baron, C. A. Shue, H. Okhravi, and
B. C. Ward, “Control-flow integrity for real-time embedded systems,”
in 31st Euromicro Conference on Real-Time Systems (ECRTS), 2019.
A. Khan, D. Xu, and D. J. Tian, “Low-cost privilege separation with
compile time compartmentalization for embedded systems,” in 2023
IEEE Symposium on Security and Privacy (SP), 2023.

L. Amit, C. Bradford, G. Branden, G. Daniel, P. Pat, D. Prabal, and
L. Philip, “Multiprogramming a 64 kB computer safely and efficiently,”
in Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP), 2017.

G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, “Architecture of the
ibm system/360,” IBM Journal of Research and Development, 1964.
G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Communications of the ACM, 1974.
“Linux KVM: http://www.linux-kvm.org, retrieved 9/16/12.”

B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, 1. Pratt, A. Warfield,
P. Barham, and R. Neugebauer, “Xen and the art of virtualization,” in
ACM Symposium on Operating Systems Principles (SOSP), 2003.

J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing i/o devices
on vmware workstation’s hosted virtual machine monitor,” in Proceed-
ings of the General Track: 2002 USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 2001, pp. 1-14.

L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds,” ACM SIGCOMM Computer Communication Review,
2009.

G. Heiser, “The role of virtualization in embedded systems,” in Pro-
ceedings of the 1st workshop on Isolation and integration in embedded
systems, 2008.

A. Igbal, N. Sadeque, and R. I. Mutia, “An overview of microkernel,
hypervisor and microvisor virtualization approaches for embedded sys-
tems,” Report, Department of Electrical and Information Technology,
Lund University, Sweden, 2009.

R. Mijat and A. Nightingale, “Virtualization is coming to a platform
near you,” ARM white paper, 2011.

D. Rossier, “Embeddedxen: A revisited architecture of the xen hy-
pervisor to support arm-based embedded virtualization,” White paper,
Switzerland, 2012.

K. Sandstrom, A. Vulgarakis, M. Lindgren, and T. Nolte, “Virtualiza-
tion technologies in embedded real-time systems,” in 2013 IEEE 18th
Conference on Emerging Technologies & Factory Automation (ETFA),
2013.

S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong, J. Cabral,
and A. Tavares, “Towards a lightweight embedded virtualization archi-
tecture exploiting ARM TrustZone,” in Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), 2014.

C. Moratelli, S. Johann, M. Neves, and F. Hessel, “Embedded virtual-
ization for the design of secure iot applications,” in 2016 International
Symposium on Rapid System Prototyping (RSP), 2016.

J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao: A
lightweight static partitioning hypervisor for modern multi-core embed-
ded systems,” in Workshop on Next Generation Real-Time Embedded
Systems (NG-RES 2020), 2020.

P. Parra, A. Da Silva, B. Losa, J. I. Garcia, 0. R. Polo, A. Martinez,
and S. Sanchez, “Tailor-made virtualization monitor design for cpu
virtualization on leon processors,” ACM Transactions on Embedded
Computing Systems, 2023.

“FreeRTOS: http://www.freertos.org, retrieved 5/1/13.”

W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Good motive but bad design:
Why ARM MPU has become an outcast in embedded systems,” arXiv
preprint arXiv:1908.03638, 2019.

D. Danner, R. Muller, W. Schroder-Preikschat, W. Hofer, and
D. Lohmann, “SAFER SLOTH: efficient, hardware-tailored memory
protection,” in 20th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2014.

A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “ACES:
Automatic compartments for embedded systems,” in Proceedings of the
27th USENIX Conference on Security Symposium (CSS), 2018.

(36]

(37]

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]
[57]

(58]

[59]

D. Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek, “uXOM:
Effient execute-only memory on ARM Cortex-M,” in USENIX Security
Symposium (USENIX Security), 2019.

N. Dejon, C. Gaber, and G. Grimaud, “Pip-mpu: Formal verification of
an mpu-based separation kernel for constrained devices,” International
Journal of Embedded Systems and Applications, 2023.

“Mbed uVisor: https://github.com/armmbed/uvisor, retrieved 6/2/24.”
Z. B. Aweke and T. Austin, “uSFIL: ultra-lightweight software fault
isolation for iot-class devices,” in 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2018.

X. Zhou, J. Li, W. Zhang, Y. Zhou, W. Shen, and K. Ren, “OPEC:
operation-based security isolation for bare-metal embedded systems,”
in Proceedings of the Seventeenth European Conference on Computer
Systems (EuroSys), 2022.

A. K. Sundar Rajan, A. Feucht, L. Gamer, I. Smaili, and N. D.
M., “Hypervisor for consolidating real-time automotive control units:
Its procedure, implications and hidden pitfalls,” Journal of Systems
Architecture, vol. 82, p. 3748, 2018.

“F9 microkernel: https://github.com/f9micro/f9-kernel, retrieved 6/2/24.”
R. Strackx, F. Piessens, and B. Preneel, “Efficient isolation of trusted
subsystems in embedded systems,” in Security and Privacy in Communi-
cation Networks: 6th Iternational ICST Conference, SecureComm 2010,
Singapore, September 7-9, 2010. Proceedings 6, 2010.

H. Xia, J. Woodruff, H. Barral, L. Esswood, A. Joannou, R. Kovacsics,
D. Chisnall, M. Roe, B. Davis, E. Napierala et al., “CheriRTOS: A ca-
pability model for embedded devices,” in 2018 IEEE 36th International
Conference on Computer Design (ICCD), 2018.

H. M. E. Aratjo, “Ltzvisor: a lightweight trustzone-assisted hypervisor
for low-end arm devices,” Ph.D. dissertation, Universidade do Minho,
2018.

S. Otani, N. Otsuki, Y. Suzuki, N. Okumura, S. Maeda, T. Yanagita,
T. Koike, Y. Shimazaki, M. Ito, M. Uemura et al., “A 28nm 600mhz
automotive flash microcontroller with virtualization-assisted processor
for next-generation automotive architecture complying with 185026262
asil-d,” in 2019 IEEE International Solid-State Circuits Conference
(ISSCC), 2019.

H. Almatary, M. Dodson, J. Clarke, P. Rugg, I. Gomes, M. Podhrad-
sky, P. G. Neumann, S. W. Moore, and R. N. Watson, “Compartos:
Cheri compartmentalization for embedded systems,” arXiv preprint
arXiv:2206.02852, 2022.

M. Schonstedt, F. Brasser, P. Jauernig, E. Stapf, and A.-R. Sadeghi,
“Safetee: combining safety and security on arm-based microcontrollers,”
in 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2022.

D. Oliveira, T. Gomes, and S. Pinto, “utango: an open-source tee for iot
devices,” IEEE Access, 2022.

M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty, “Hodor:{Intra-Process} isolation for {High-Throughput}
data plane libraries,” in 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 2019.

M. Sung, P. Olivier, S. Lankes, and B. Ravindran, “Intra-unikernel
isolation with intel memory protection keys,” in Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, 2020.

G. Li, D. Du, and Y. Xia, “Iso-unik: lightweight multi-process unikernel
through memory protection keys,” Cybersecurity, 2020.

V. A. Sartakov, L. Vilanova, and P. Pietzuch, “Cubicleos: A library os
with software componentisation for practical isolation,” in Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for network sensors,” in Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
November 2000.

P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite: a
security architecture for tiny embedded devices,” in Proceedings of the
Ninth European Conference on Computer Systems (EuroSys), 2014.
“extended Berkeley Packet Filter (¢eBPF). https://ebpf.io/.”

J. Corbet, “Bpf: the universal in-kernel virtual machine,” Linux Weekly
News, Eklektix Inc, 2014.

K. Zandberg, E. Baccelli, S. Yuan, F. Besson, and J.-P. Talpin, “Femto-
containers: lightweight virtualization and fault isolation for small soft-
ware functions on low-power IoT microcontrollers,” in ACM/IFIP Inter-
national Middleware Conference (Middleware), 2022.

S. Kubica and M. Kogias, “ubpf: Using ebpf for microcontroller
compartmentalization,” in Proceedings of the ACM SIGCOMM 2024
Workshop on eBPF and Kernel Extensions, 2024.

[60]
[61]
[62]
[63]
[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

“MicroEJ for microcontrollers: http://www.microej.com, retrieved
10/6/17.”

“MicroPython for microcontrollers: http://www.micropython.org, re-
trieved 10/6/17

“Duktape. An embeddable Javascript engine with a focus on portability
and compact footprint, https://duktape.org, retrieved 12/14/20,” 2020.
“mJS embedded javascript engine for C/C++:
http://github.com/cesanta/mjs, retrieved 10/6/17.”

“eLua project: http://www.eluaproject.net, retrieved 10/6/17.”

W. R. Davis, P. A. Laplante, and B. I. Sandén, “A real-time virtual
machine implementation for small microcontrollers,” Innovations in
Systems and Software Engineering, 2012.

R. Gurdeep Singh and C. Scholliers, “WARDuino: A dynamic we-
bassembly virtual machine for programming microcontrollers,” in ACM
SIGPLAN International Conference on Managed Programming Lan-
guages and Runtimes (MPLR), 2019.

N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “pRAIL:
Securing embedded systems with return address integrity,” in Network
and Distributed Systems Security Symposium (NDSS), 2020.

T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in 20th International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID), 2017.

J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls, “Silhouette:
Efficient protected shadow stacks for embedded systems,” in 29th
USENIX Security Symposium (USENIX Security), 2020.

Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell,
“Holistic Control-Flow protection on Real-Time embedded systems with
kage,” in 31st USENIX Security Symposium (USENIX Security), 2022.
W. Choi, M. Seo, S. Lee, and B. B. Kang, “SuM: Efficient shadow stack
protection on ARM Cortex-M,” Computers & Security, 2024.

X. Tan and Z. Zhao, “Sherloc: Secure and holistic control-flow violation
detection on embedded systems,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2023.

“IAR Embedded Workbench: https://www.iar.com, retrieved 6/2/24.”
A. Lackorzynski et al., “L4linux porting optimizations,” Master’s thesis,
TU Dresden, 2004.

P. K. Gadepalli, R. Gifford, L. Baier, M. Kelly, and G. Parmer,
“Temporal capabilities: Access control for time,” in 38th IEEE Real-
Time Systems Symposium (RTSS), 2017.

Z. Ruan, A. Njavro, and R. West, “Usb interrupt differentiated service for
bandwidth and delay-constrained input/output,” in 2024 IEEE 30th Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2024.

D. Chisnall, The definitive guide to the xen hypervisor. Prentice Hall,
2008.

R. Pan and G. Parmer, “MxU: Towards predictable, flexible, and efficient
memory access control for the secure IoT,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1-20, 2019.
R. Pan and G. Parmer, “SBIs: Application access to safe, baremetal
interrupt latencies,” in 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2022.

P. K. Gadepalli, R. Pan, and G. Parmer, “Slite: OS support for near
zero-cost, configurable scheduling,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020.

