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Abstract—Traditional embedded systems often ignore security,
instead focusing on simplicity. Unfortunately, increasingly per-
vasive network connectivity exposes these systems to malicious
input, and the consolidation of code of various qualities and
sources onto single systems increases the chance of errant
behavior. Microcontrollers do not often have advanced security
facilities to help prevent malicious threats – even the use of
memory protection to constrain the ill-effects of a compromise
is not pervasive. Software techniques to provide strong security
properties for application execution often focus on limiting
accessible memory through dynamic checks on memory accesses
through software fault isolation (SFI), and on ensuring that
software cannot suffer from control-flow hijack attacks through
control-flow integrity (CFI). This paper introduces OmniWasm,
which provides sandboxes in which applications execute that
provide both SFI and CFI. OmniWasm focuses on two core
contributions. First, it reduces the overhead of these techniques
by using a novel application of common, but obscure memory
operations to both limit sandboxed memory accesses (SFI) using
hardware, and allow memory accesses outside the sandbox to
enable CFI. Second, it focuses on enabling embedded soft-
ware to be decomposed into multiple sandboxes by providing
optimized communication facilities between them that avoid
thread context switching overheads and providing single-copy
message passing. We show that the overheads of OmniWasm
are better than existing software address validation techniques
while also providing better memory utilization. We also show
that OmniWasm enables significant performance gains for inter-
sandbox communication across varying message sizes.

I. INTRODUCTION

Security has often been an after-thought in embedded

systems. In embedded systems that are closed – those that

are not exposed to network traffic, and running only ap-

proved and integrated code, security techniques are often

seen as only increasing overheads and complexity. However,

modern systems are increasingly directly attached to, and

interact with networks. Vehicles are connected to the cloud,

infrastructure, and each other (in V2X), industrial plants are

integrated into analytics-driven control loops (Industry 4.0),

and embedded systems that are part of the Internet of Things

(IoT) interact with each other and users through the Internet.

Even the smallest embedded systems must assume that they

are exposed to potentially malicious communication over the

Internet. At the same time, the code that executes on these

systems is increasingly open-source, complex, and generally

more difficult to certify for the absence of bugs that are

potentially exploitable.

This material is based upon work supported by the National Science
Foundation under Grants No. CPS 1837382, CNS 1815690, and by the
Office of Naval Research under N000142212084. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the NSF nor ONR.

Microcontrollers provide the low-power, inexpensive com-

putation in many of these embedded domains. Arm Cortex-

M microcontrollers are popular and have between low tens

to hundreds of MHz, with tens to low hundreds of KiB of

SRAM. Unfortunately, these systems do not have many of

the features that promote security such as W ⊕X , MMUs, or

Pointer Authentication (PA) [1] to provide protection against

shell-code, address virtualization and protection, or control-

flow integrity, respectively. The combination of an increasing

exposure to potentially malicious network input, and lack

of hardware security features motivates new approaches to

provide strong security on these pervasive systems.

Software-based approaches to adding security to legacy

code can bridge this gap. Software Fault Isolation (SFI) [2],

[3], [4] adds dynamic checks into existing C code, that

cause access exceptions to memory outside of an application’s

sandbox. This prevents potentially compromised or errant

code from accessing memory outside of the application.

Control-Flow Integrity [5], [6] techniques ensure that the

control flow of an application follows only the prescribed

paths intended by the compiler and developer. This prevents

control-flow hijacking attacks like stack smashing and Return-

oriented Programming (RoP) [7], [8].

WebAssembly [9] (Wasm) is an abstract assembly language

that is low-level enough that C code can compile to it –

for example, it does not require garbage collection, enables

pointers, pointer arithmetic, stack allocation of memory. A

Wasm runtime provides strong SFI and CFI properties, thus

sandboxing the code within. Wasm is an output target for

the LLVM and clang C/C++ compiler. It has been used in

embedded systems [10], [11], [12], [13] to sandbox existing

C code.

A key mechanism used by Wasm runtimes to provide

SFI is bounds checks on memory accesses. To ensure that

an application sandbox accesses only the set of memory

it has been allocated, dynamic checks on pointer derefer-

ences trigger software exceptions if outside of the sand-

box’s memory. These checks are often optimized to remove

conditional branches, instead masking addresses to keep

them within a power-of-two amount of sandbox memory.

eWasm [10] investigates various implementations and found

that they present an unfortunate trade-off: waste memory with

wrapping-based pointer updates, or suffer more overhead for

explicit condition-based bounds checking.

Microcontrollers often provide Memory Protection Units

(MPUs) that explicitly specify a set of memory ranges that

user-level execution can access without exception. While
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MPUs seem ideal for preventing memory accesses outside of

a sandbox, this is complicated as most CFI runtimes require

interleaved memory instructions for accessing the runtime’s

data-structures with application memory accesses within the

sandbox memory. Without gratuitous mode switching, the

MPU cannot both prevent access beyond the sandbox’s mem-

ory, and allow the runtime’s data-structures.

OmniWasm provides a Wasm runtime that both avoids

the overheads of bounds checking and is memory efficient.

As such, it avoids the trade-offs between performance and

memory of previous implementations. To do so we lever-

age little known, but commonly deployed, load and store

instructions that can be executed in kernel mode, but that

perform MPU checks as if the load/store were made from user

mode. Importantly, there are no algorithmic changes made

when compiling C into Wasm sandbox, executable code, so

predictable C code maintains bounded execution times.

In sandboxing code, OmniWasm also enables the fine-

grained isolation between different software applications. It

enables system software to be decomposed into multiple,

smaller sandboxes, and to efficiently communicate between

them. This enables controlling the impact of faulty execution

to subsets of the system, that can then be independently

rebooted. To maintain strong isolation, we copy messages be-

tween sandboxes, but optimize the system to require a single

copy compared to conventional RTOS communication APIs.

Similarly, the Wasm model enables multiple sandboxes to

execute sequentially in the same thread, which also optimizes

IPC overhead, and saves stack memory.

A key property of OmniWasm’s Wasm implementation is

that it maintains key real-time and latency properties of em-

bedded code, while enabling stronger security and reliability.

Specifically, C code that provides bounded execution times,

maintains bounded execution times in the output assem-

bly – though overheads might result in latencies increasing

(see §V-A). The relatively low-level mechanisms of Wasm

avoid the complicated lookup structures or garbage collection

common in language virtual machines that can introduce

unpredictability. By maintaining the bounded execution times

of C code down to the generated assembly, OmniWasm
establishes a foundation for secure real-time execution.

Given the increasing software complexity, and exposure

to networks of modern embedded systems, techniques to

increase software security are necessary. OmniWasm repre-

sents a significant innovation in Wasm compilers and runtimes

for microcontrollers by providing efficient execution and

efficient use of memory, while providing optimized IPC to

enable decomposing system software into fault domains.

Contributions. OmniWasm’s contributions include:

HW/SW co-design for efficient SFI/CFI. We design and

implement a new mechanism for performing bounds-

checks for sandboxes. It uses instructions that are little-

used, but pervasively deployed on Arm Cortex-M micro-

controllers to enable the MPU to validate that pointer

dereferences are within a sandbox.

Efficient inter-sandbox communication. To aid in de-

composing the system into various sandboxes, each of

which can fail independently, we introduce a novel IPC

infrastructure that is optimized to enable single-copy mes-

sage passing, and stack sharing.

Wasm sandbox evaluation. We also provide a benchmark

and application-driven evaluation of our techniques com-

pared to native C code, and eWasm. We demonstrate that

though there is overhead for strong SFI and CFI, we

improve over existing techniques.

II. BACKGROUND

In this paper, we propose a hardware bounds-checking

mechanism that provides efficient memory sandboxing for

Wasm running on microcontrollers. This section focuses on

background for two technologies integral to this mechanism:

Wasm and MPUs.

A. WebAssembly

Wasm is an abstract assembly language [14] designed to

run across various platforms at speeds comparable to native

execution that is not tied to any specific language. Unlike

native code execution, a key property of Wasm code is that it

is executed in a sandbox. Wasm employs both software fault

isolation (SFI) and control flow integrity (CFI), thus a Wasm

runtime provides a secure environment for running untrusted

code. Importantly, both SFI and CFI are provided in a Wasm

runtime using simple mechanisms that add only constant

overheads to low-level assembly operations (e.g. loads and

stores, or function pointer invocation). Thus, code compiled

to Wasm that has bounded execution times, will maintain a

bounded execution time, though latency might increase due to

overheads. Figure 1 displays the Wasm sandbox and runtime

layout.

Wasm Compiled from
(C,Java,Python,...)

Linear Memory

Indirect Function Call Table Execution Stack

Wasm Sandbox

Stack HeapData

Wasm Runtime

Fig. 1: Wasm Sandbox and Runtime Layout

Memory Safety via Software Fault Isolation. Each Wasm

sandbox accesses a range of memory, represented as a con-

tiguous array of bytes known as the “linear memory”. This

linear memory is separate from the memory of other Wasm

sandboxes and from the system’s memory. Through SFI, load

and store memory operations performed by a sandbox are

restricted to be only within its linear memory. A Wasm

compiler and runtime, which implements the semantics of the

Wasm specification, ensures the safety of a sandbox’s memory

accesses by inserting bounds checks. These prevent out-of-

bounds memory accesses, such as buffer overflows, accessing

memory outside of linear memory.

Control Flow Integrity. CFI is a security property that

prevents attackers from altering program control flow beyond

what was intended by the programmer and compiler. The
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Sandbox module requires CFI to ensure that no bugs can be

leveraged to modify the program’s control flow. To guarantee

CFI, Wasm uses a data stack and an indirect function call

table.

• Separate data and execution Stack. When the execution

stack in C holds data (e.g. arrays), there is a vulnerability

risk: stack smashing [7] can index past stack-allocated

array bounds, and overwrite instruction-pointer return val-

ues. Thus, upon return, an attacker can hijack control flow.

To counteract this, Wasm separates the execution stack that

tracks function invocations and return addresses, from a

data stacks that hold addressable data that is placed inside

linear memory. The normal execution stack includes only

values to which code does not have an address, including

function call return addresses. As a result, sandboxed code

cannot programmatically modify the execution stack, thus

preventing stack smashing attacks.

• Indirect function call table. Another way that attackers

hijack a program’s control flow is by overwriting function

pointers or vtable entries, redirecting them to addresses

of malicious code or to sequences of Return-Oriented

Programming (ROP) [8] gadgets. Wasm prevents function

pointers from taking arbitrary values using a typed, in-

direct function call table. The table is outside of linear

memory, thus not modifiable by sandboxed code. Each

entry in this table points to a function, initialized at

compile time (from a valid function address). Function

pointers in the Wasm code are offsets into this table,

instead of direct addresses. When a call through a function

pointer is made, the function to call is looked up in the

call table using the index. The Wasm runtime performs two

checks. First, the runtime checks that the provided index

is within the valid range of the function table. Second, if

the index is valid, the runtime checks that the function

at that index in the function table matches the expected

type signatures. This function type signature check can

prevent the attacker from calling a function with incorrect

arguments or exploiting type conversion vulnerabilities.

This support enables even low-level code (e.g. C) to safely

avoid function pointer control-flow hijacking attacks.

B. eWasm: an Efficient, Embedded Wasm Implementation

Memory bounds-checking is a crucial aspect of memory

sandboxing, aiming to prevent out-of-bounds memory ac-

cesses. Software bounds-checking needs to add additional

code instructions to validate every memory access operation.

Figure 2 illustrates how eWasm distributes the Wasm sandbox

data.

Software Bounds Checking. eWasm [10] provides three

separate bounds-checking mechanisms:

• Condition-based bounds-checking. This method inserts

naive condition-based bounds checks on every linear mem-

ory load and store. For example, conditional checking

for an address a, with a given linear memory bound

(lm bound):

if (a >= lm bound) exception();

p

1024 

 Memory layout

......
int *p = malloc(1024)

......

Wasm compiled from C

Execution Stack
Linear Memory

Fig. 2: eWasm’s implementation of Wasm sandboxes splits sandbox
data across the stack and linear memory. It ensures that data that
can be indexed into (thus requires checks to ensure that the index
is within valid ranges) is allocated into linear memory. Software
bounds checks are added to each load and store to linear memory
to prevent memory accesses outside the sandbox. Stack-allocated
variables that are not indexed, along with control flow meta-data
(e.g. function return addresses) are tracked in the normal execution
stack, identified with the stack pointer.

• Masking-based sandboxing. This approach applies a bit-

mask to offsets during each linear memory load and

store to prevent accesses beyond power-of-two sized linear

memory. Assuming that lm bound is a power-of-two:

a = a & (lm bound - 1);

• Software page-tables. This technique enables non-

contiguous linear memory and necessitates a page lookup

before every memory load and store.

Note that the examples above are simplified and do not

consider the size of the data retrieved at the address a.

While masking-based sandboxing demonstrates the best

performance – being only 1.5x slower than native execution

– it carries a significant drawback. Specifically, it can lead

to up to 100% linear memory wastage, averaging 50%.

In contrast, condition-based bounds-checking and software

page-tables methods, which do not result in linear memory

wastage, lag in performance, operating at 2x and 4x the native

speed, respectively. This presents a clear trade-off in software

bounds-checking: to achieve enhanced performance, one may

need to compromise on memory efficiency and vice versa.

Beyond this trade-off, software bounds-checking inherently

introduces performance overhead by necessitating additional

code for each load and store operation.

C. MPUs for Hardware Memory Protection

MPUs are hardware units that are commonly featured

on microcontrollers. Unlike Memory Management Units

(MMUs) that provide address virtualization (i.e. translation

from virtual to physical addresses), MPUs focus only on

subsetting the memory accessible to executing code.

A load or store to an address outside of the MPU-defined

accessible set, results in a processor exception, thus enabling

the RTOS to handle erroneous accesses. This has been used

in RTOSes [15], [16] to provide minimal process abstractions

that provide memory protection by limiting the memory

accessible to different tasks.

To restrict memory access, the MPU divides physical

memory into several regions, each defined by its start address,

size, access permissions, and attributes. While the access

permissions and attributes of a region dictate a region’s
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accessibility status, its size and start address delineate the

region’s range.

MPU-supported region quantities and sizes depend on

specific processor designs. In Arm architectures, Armv7-m

accommodates up to 8 regions. The size of each region in

these architectures must be a power of two, and its start

address needs to align with the region’s size. In contrast, the

Armv8-m architecture can support 16 or more regions, and it

allows regions of varied sizes without the strict power-of-two

constraint. Therefore, the configuration of region numbers,

size, and start address of Armv7-m’s MPU varies from that

of Armv8-m’s MPU. We will discuss this further in the

implementation section.

While newer Arm architectures may introduce more ad-

vanced attributes for the MPU, a number of fundamental

attributes remain consistent across Arm architectures. A key

attribute of the MPU region is the access level that tells

whether the region is accessible in user mode or privileged

modes. The access permissions of the MPU region can be

read, write, or execute.

III. DESIGN

The core of our contribution is the HW/SW co-design for

processor and memory efficient sandbox bounds checking,

and IPC that enables the system to be decomposed into

multiple sandboxes. This section will discuss OmniWasm’s

design.

A. Using the MPU for Bounds-Checking

In the preceding section, we examined three software

bounds-checking techniques employed in eWasm. These soft-

ware mechanisms impose a trade-off between performance

and memory utilization, offering no avenue to optimize for

both CPU and memory resources. Furthermore, these methods

introduce performance overhead due to the insertion of addi-

tional, explicit bounds-checking instructions into the code. In

the case of address wrapping approaches, sandbox memory

must be rounded up to a power of two, decreasing utilization.

Consider a strawman sandbox runtime that avoids this

trade-off by using an MPU. It includes a monitor that is

responsible for maintaining the integrity of sandboxed Wasm

code by enforcing bounds checks and maintaining data struc-

tures to ensure CFI. Using a hardware MPU potentially offers

strict enforcement of linear memory boundaries, ensuring

that the sandboxed Wasm code cannot overstep its allocated

memory. However, the MPU limits all load and store in-

structions, including those of the monitor’s data structures.

The monitor requires data-structures outside of the sandbox

to maintain the sandbox’s integrity (including, for example,

the execution stack and indirect function pointer table). As

a result, the sandbox monitor faces a dilemma: if it uses the

MPU for isolation, it must temporarily alter MPU settings to

access these data structures. Practically, this means effectively

making mode transitions for each function call, which is a

slower solution than a simple conditional bounds check.

In contrast, OmniWasm’s goal is to leverage MPU-based

bounds check so that software can elide bounds-checking

instructions, while still enabling the sandboxing logic to

Wasm Sandbox

Wasm Runtime

(b) MPU-based 

Linear Memory 

Execution Stack

Wasm Sandbox

          Wasm Runtime

Linear Memory Execution Stack

User Mode

Kernel Mode

software bounds
checking code

Wasm Sandbox

Wasm Runtime

Linear Memory 

Execution Stack

(a) Our approach (c) SFI based

Fig. 3: Comparison between OmniWasm, MPU-based, and SFI
bounds-checking approaches in Wasm.

directly access its runtime state. To achieve this, we extend

the isolation mechanisms of the eWasm compiler and runtime

to use “unprivileged load and store” instructions on popular

Arm chips.

The Arm architecture manages memory access through

standard load and store instructions. Using normal instruc-

tions, once the MPU is configured to limit the linear memory

access to user mode execution, a sandbox monitor that is

operating in user mode can only perform load and store

operations on this linear memory. Direct load and store

operations on the monitor’s data structures that are outside

of linear memory are disallowed. To side-step this limitation,

OmniWasm uses unprivileged load and store instructions.

Arm architecture versions v5, v6, v7, and v8, as well as the

microcontroller profiles v7m and v8m, support unprivileged
load and store instructions – ldrt and strt (or ldtr and

sttr in AArch64 v8a). These instructions ensure that mem-

ory access operations are performed as if from user mode,

regardless whether the processor is currently in user mode or

kernel mode. We leverage these instructions to execute MPU-
restricted linear memory accesses while enabling standard

load and store instructions to directly access privileged data

structures. In this setup, the unprivileged load and store

instructions allow the sandbox monitor to operate in kernel

mode, ensuring fast access to privileged data structures by

avoiding mode switches, while still enforcing that Wasm logic

can only interact with the linear memory, thereby providing

SFI. Figure 3 compares this approach with two other bounds-

checking approaches.

SFI memory isolation properties in OmniWasm trans-

late program loads and stores directly into unprivileged

loads and stores. By utilizing these unprivileged load and

store instructions, OmniWasm uses direct access to memory

without the need for frequent mode switches, lookups, or

additional bounds-checking code. Since this introduces no

additional, unpredictable overheads, C code with a bounded

execution time should maintain bounded execution times in

OmniWasm thus integrating cleanly into existing real-time

systems.

B. RTOS Support for Multi-Sandbox Systems

Unlike traditional operating systems with features like

virtual machines and containers for sandboxing, RTOS envi-

ronments often lack these sandboxing options due to hardware

resource constraints. Most RTOSs employ IPC mechanisms

to support task communication, and temporal isolation by
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decoupling task’s execution. However, these IPC mechanisms

imply significant overheads. These often include messages

being copied twice through intermediate buffers, and thread

communication necessitating context switching. In this paper,

we introduce a solution that aims to reduce both context-

switching and memory copy overheads without compromising

task memory isolation and security features within an RTOS

environment.
OmniWasm sandboxes execute preemptively. Thus, when

executed in separate RTOS threads, sandboxes execute inde-

pendently. While Wasm has atomic instruction extensions for

multi-threaded sandbox execution within a sandbox, eWasm

and OmniWasm do not yet support them. Thus, Omni-
Wasm’s current sandboxes are single-threaded.

FreeRTOS OS

Queue

Thread 1

Stack

Thread n

Stack

Fig. 4: FreeRTOS IPC communication between threads

FreeRTOS OS

Thread 1

Stack

Wasm Runtime

Omniwasm chain communication model

Sandbox_0

Linear Memory

Sandbox_1

Linear Memory

Sandbox_n

Linear Memory

Fig. 5: Wasm chain model for IPC.

Figure 4 shows the traditional IPC communication between

threads using traditional RTOS mechanisms (e.g. in FreeR-

TOS). Given the concurrent execution of communicating

threads, an intermediate buffer is often used to maintain inde-

pendent execution of each thread. In contrast, Figure 5 shows

OmniWasm’s IPC mechanism for communication between

Wasm sandboxes. Our design is based on the assumption that

sandboxes in a chain of communication execute sequentially

based on message dependencies. We focus on the isolation

of memory and logic between each sandbox, and not on

concurrency for sandboxes in a chain. This assumption is

natural given the communication dependencies intrinsic in

chains of processing, but it does limit concurrency. Should

temporal isolation between sandboxes be required, the Wasm

runtime can leverage timer interrupts to detect overruns.
To limit a sandbox’s communication to only with allowed,

down- and up-stream sandboxes, we provide a capability-

based API [17]. With this, a sandbox specifies the capability

it wishes to send or receive messages from, and the runtime

maps that capability to the target sandbox.

Sandbox Context Switching. In Figure 4, switching between

threads requires RTOS overheads such as scheduling and

saving and restoring registers. In contrast, in Figure 5, Wasm

modules are self-isolating and they all execute sequentially

(in chain order) in a single host thread. The runtime is able

to switch between sandboxes effectively with function calls

within a single thread, thereby reducing the overhead asso-

ciated with thread context switching and stack management.

This has an additional benefit in memory-restricted embedded

systems of requiring allocations only for a single thread with

a stack requirement of the maximum stack usage of any its

chained sandboxes.

Inter-sandbox Communication for Chain-based IPC. Most

RTOSs support communication methods including mailboxes

and queues [18]. While mailboxes are designed for single

messages, queues facilitate the transmission of multiple mes-

sages. Both mechanisms generally involve two memory copy

operations through an intermediate buffer.

Inter-sandbox communication in our system uses chain-

based IPC primitives explicitly provided by OmniWasm’s

runtime. In this chain model, data flows sequentially from

one sandbox into the next, a common pattern in embedded

systems used for subsequent stages of sensor processing. Each

stage processes the incoming data and passes its own output to

the subsequent stage. The first and last stages act as the source

and sink, respectively, while the intermediate stages both send

and receive messages. When a sandbox wants to transmit a

message, the OmniWasm runtime directly allocates space

within the receiving sandbox’s own memory for that message,

and copies it directly from transmitting buffer to the freshly

allocated memory. This approach eliminates the need for

a second memory copy through the RTOS buffers while

maintaining strong inter-sandbox isolation.

OmniWasm focuses on low and bounded latency commu-

nication between sandboxes, while also bounding memory

consumption for messages. Latency is optimized by pro-

cessing various sandbox stages in a chain sequentially in

a single (RTOS) thread, while message buffers are directly

pre-allocated in sandbox memory, enabling direct transfer

between sandboxes. The capabilities of each sandbox limit

their communication only to the next, intended sandbox

in the chain. This sequential, chain-driven execution and

direct message transfer, combined with bounded execution

of OmniWasm sandbox code, enable end-to-end, bounded

execution of chains of isolated computations.

C. Threat Model and Security Analysis

OmniWasm’s goal is to provide strong SFI and CFI

to prevent sandboxed code from impacting code or data

outside the sandbox using mechanisms aside from defined

communication channels. Our threat model is inherited from

WebAssembly. Unlike managed runtimes that require strong

type-safety, Wasm aims to support even low-level C code, thus

enables the creation of arbitrary pointers. As a consequence

of this, conventional attempts to threaten data integrity or to

hijack control flow of the sandbox can be attempted. These

include attempting to jump to malicious dynamic function

pointers and to utilizing buffer overflow attacks to manipulate

values held in the stack.
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We assume that the code provided by the application is We-

bAssembly (e.g. compiled from C into Wasm). At the Wasm

level, not all operations available in C are expressible. This

makes it impossible (given Wasm limitations) to express other

mechanisms for control flow hijacking including manipulating

computed gotos and switch statements based on jump tables.

Further, executable logic specified in Wasm cannot include

native ISA assembly instructions as it is limited to the Wasm

instruction-set. To ensure these properties, all Wasm code is

explicitly validated.

Security Analysis. While arbitrary addresses can be syn-

thesized in a sandbox, the WebAssembly execution model

prevents attempts to load or store memory outside of linear

memory, instead raising a runtime exception. Stack-allocated

data (in C) that can be accessed through a pointer, is allocated

in the data stack within linear memory. This is separate from

the execution stack, and ensures that any buffer overflows in

stack-allocated data are subject to the normal linear memory

access checks. To prevent (potentially malicious) function

pointers from hijacking control, runtime code validates the

function before jumping to it. Fundamentally, while sand-

boxed code is allowed to directly modify linear memory, the

Wasm execution model ensures that addresses used in control-

flow (function return addresses, and function pointers) are

outside of linear memory, thus not corruptible by sandboxed

code. In eWasm, memory accesses are limited to linear-

memory via bounds checks, the data stack is allocated in

linear memory, and the function pointer table is allocated

statically by the compiler.

The key to understanding OmniWasm’s security properties

is that we aim to maintain the Wasm execution model. First,

OmniWasm must limit sandboxed loads and stores to the

allowed linear memory range. While existing approaches use

software bounds checks or wrapping logic, OmniWasm uses

unprivileged loads and stores confined by the MPU to the

linear memory range. Sandboxed code is prevented from ac-

cessing memory using normal (kernel mode) instructions that

would not be MPU-protected as the OmniWasm compiler

generates only unprivileged memory instructions correspond-

ing to Wasm load and store instructions. The monitor ensures

that the unprivileged load and stores are properly MPU-

constrained by loading the MPU before executing the sandbox

and relying on the RTOS to save/restore MPU context on

thread switches.

We additionally consider complexities due to the execution

of sandboxed code in kernel mode. The sandboxed logic

is prevented from executing privileged instructions – or

accessing CPU state that could threaten sandbox integrity

(e.g. MPU registers) – due to (1) the code’s inability to

express assembly code in validated Wasm – preventing direct

execution of instructions not generated by the OmniWasm
compiler, (2) the inability to access memory-mapped CPU

structures that are outside of linear memory – prevented by the

MPU-limited unprivileged memory instructions, and (3) the

CFI properties that prevent the sandbox from generating new

executable instructions (e.g. shell code). OmniWasm inherits

the indirect function pointer table logic, and execution and

data stack separation from eWasm, thus maintaining their key

CFI properties.

OmniWasm is designed to maintain the strong SFI and

CFI guarantees of the Wasm execution model, while limiting

resource consumption, and integrating into an existing RTOS

environment. WebAssembly’s focus is on sandboxing code,

not on minimizing the system’s Trusted Computing Base

(TCB). The code generated by the eWasm compiler, the

OmniWasm extensions to it, the monitor’s runtime, the

FreeRTOS-based OS, and the hardware are all required to

be correct to maintain SFI and CFI properties. As such, these

all constitute the TCB necessary to sandbox applications.

IV. IMPLEMENTATION

Our implementation of MPU-based bounds checks and

single copy IPC in OmniWasm is a series of compiler and

runtime extensions of the publicly accessible eWasm [10]

project [19]. eWasm provides a compiler named aWsm [19]

that converts Wasm code to LLVM binary code and a

wasm runtime that maintains sandboxed isolation. We use the

WASI-SDK [20] to generate Wasm abstract assembly code

from the source application. aWsm compiles that Wasm code

into LLVM-IR, and we then use LLVM to generate the Arm

target binary. By default, Wasm linear memory is comprised

of pages with a default size of 64KB [9]. This means that

all linear memory sizes are rounded up to the nearest page

size. In a resource constraints microcontroller system, this

can lead to a prohibitive amount of memory waste (due to

internal fragmentation). Correspondingly, we modified the

default page size in WASI-SDK to 1KB, thus ensuring that

the WASI-SDK compiler is now capable of generating Wasm

code that understands the significantly smaller page size, thus

decreasing memory internal fragmentation.

Similar to eWasm, we assume that each sandbox has a

known maximum linear memory size. Thus we statically

allocate the linear-memory for each, an assumption that is

reasonable and often necessary in many resource-constrained,

embedded systems.

A. MPU-based Bounds Checking

The MPU-based bounds-checking implementation consists

of two parts: MPU configuration/programming and the use of

unprivileged memory load and store instructions. Program-

ming the MPU hardware includes setting a specific region

number to have a specific region base address, region size,

and region permission. The MPU memory region in Armv6-m

and Armv7-m architectures must be aligned to a base address

that is a multiple of the region size, and must be a power of

two. Thus, we must calculate the base address and size of all

regions that are necessary to cover the linear memory which is

not guaranteed to have a power-of-two length, nor be aligned

on a power-of-two base address.

Figure 6 shows an example of how the MPU is configured

to perform bounds-checking for linear memory. We have a

Wasm application with a 67KiB linear memory that has a

start address at 0x20000000. This Wasm application, as an

example, tries to load the value both inside and outside of

linear memory. When the OmniWasm runtime executes the
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Main function

...
/* MPUSetProtection(base_addr, region size, region \

number, permission level)  */
MPUSetProtection(0x20000000,0x10000,0x01,0x03);
MPUSetProtection(0x20010000,0x800    ,0x02,0x03);
MPUSetProtection(0x20010800,0x400    ,0x03,0x03);
wasmf__start();
MPUSetProtection(0x20000000,0x10000,0x01,0x01);
MPUSetProtection(0x20010000,0x800    ,0x02,0x01);
MPUSetProtection(0x20010800,0x400    ,0x03,0x01);

...

0x20000000 0x20080000

memory load

ldrt 0x20020000

ldrt 0x20010000

0x20010D00

RAM

...
get_i32(u32 offset) {
;   offset stored in r0
;   void* address      = &mem_as_chars[offset];
    movw    r1, #memory_address_low
    movt     r1, #memory_address_high
;   return __builtin_arm_ldrt((i32*)(address));
    add    r0,r1     ; base address + offest
    ldrt    r0,[r0]    ; memory load
    bx    lr
}

...

wasmf__start()

1

2

3

4

Fig. 6: The setup and execution of MPU bounds-checking method
for a sandbox with linear memory that spans between 0x20000000
and is of size 0x10D00.

sandbox, it must first load the MPU. First, 1 , we configure

the first MPU region with a base address that is equal to

the start address and a region size of 64KB. Second, 2 , we

configure the second MPU region with a base address that

starts from the end of the first MPU region and a region size

of 2KB. Third, 3 , we configure the MPU region number

three with a base address that starts from the end of the

second MPU region and a region size of 1KB. All three MPU

regions convey both read and write permissions (denoted

with permission level 0x3). As the OmniWasm runtime is

executing in kernel-mode, normal loads and stores are not

limited by the MPU.

After the configuration phase, we start to run the Wasm

program’s main function wasmf start(). The OmniWasm
compiler ensures that all memory loads are performed using

the logic summarized in get i32(...), which uses the

ldrt instruction. This is the unprivileged load instruction

which proceeds as if made from user mode execution. The

memory accesses of the program are shown in 4 , which

includes example loads from memory addresses 0x20010000

and 0x20020000. Since the first memory address is inside the

memory range, the hardware MPU check implicit in the ldrt

instruction allows the access. However, the second memory

address is outside of the allowed ranges, thus the MPU’s

checks during the ldrt will trigger a memory fault.

Computing MPU Configurations. The linear memory can

be mapped into N MPU regions, which must be equal to

or less than the maximum number of MPU regions that are

supported by the hardware. For each MPU region, we assign

the MPU region size and MPU region base address.

The configuration is determined by iteratively assigning

regions that each cover the largest power-of-two amount of

linear memory, leaving a smaller uncovered portion which

is considered in the next iteration. In this paper, R is a

sequence of MPU region sizes (∀ri∈Rri × 2 = ri+1), M is

linear memory size that is not yet covered by MPU regions,

{Ax, 1 < x < N} represents the size of MPU region x, and

{Bx, 1 < x < N} is the base address of MPU region x. The

formula below shows how to find elements of R to cover M

∃rj ∈ R : rj ≤ M < rj+1, Ax = rj (1)

Now uncovered linear memory size is M = M − rj .

Here we iterate until either x > N or M = rj . x > N
implies that the linear memory cannot be fully protected by

MPU regions. M = rj indicates that the linear memory is

accurately protected by the assigned MPU regions. With this

logic, and with 8 regions and a minimum page size of 1KiB,

we should be able to cover any sandbox size less than 2NKiB
or 256KiB.

Assuming that the MPU region base address is aligned to

the MPU region size, and a sandbox’s linear memory base is

BASE, which must be aligned on an A1 address, the formula

used to calculate each region’s base is simple, contiguously

assign each region after the previous:

Bx =

{
BASE if x = 1
Bx−1 +Ax if 1 < x ≤ N

(2)

Unprivileged Load and Store Instruction Utilization. Nei-

ther GCC nor LLVM support unprivileged memory access

instructions (e.g. ldrt) by default, leading to an absence of

optimizer support. Given this challenge, we have incorporated

our optimization techniques in the implementation. However,

unlike the regular load and store instructions that support

multiple addressing modes, the unprivileged load and store

instructions are constrained to a single addressing mode,

resulting in suboptimal performance. As a result, this single

addressing mode restriction can lead to performance that is

less optimal compared to the regular load and store instruc-

tions that support multiple addressing modes.

OmniWasm uses an extended version of LLVM. We

investigate two options to enable LLVM to support these

instructions. We can use either simple inlined assembly ex-

pressions in the runtime, or attempt to add intrinsic functions

in LLVM. The linear memory load and store operations in

eWasm are defined in C code, so using inlined assembly

is a trivial extension, but inline assembly blocks are not

amenable to as many optimization passes as native LLVM IR.

In contrast, intrinsic functions can be well-integrated with the

optimization passes of LLVM, but they do not already exist

for these instructions.

The use of inline assembly is straightforward:

Listing 1: Inline assembly code for unprivileged memory load
instruction. Comparable code provides access to unprivileged stores.

asm ("ldrt %0,%1 "
:"=r"(src)
:"m"(*(const char(*)[4])(dst)));

However, despite the convenience of inline assembly in

generating assembly code for unprivileged memory access
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instructions, the performance of the resulting programs is al-

most never faster than conditional bounds checking. This de-

ficiency is attributable to the absence of LLVM optimization.

LLVM treats inline assembly code as an unknown (black-box)

code for LLVM (modulo input, output, and clobber lists) until

it is converted into machine instruction at the LLVM backend

stage. But most of the LLVM optimization passes will be

performed in the preceding LLVM IR stage. Consequently,

LLVM has limited capabilities for optimizing inline assembly

code.

However, directly modifying LLVM to add new load and

store instructions is also not straightforward. Normal memory

operations must be discriminated from those we wish to make

to linear memory. This motivates the use of explicitly uti-

lized intrinsic functions to perform the unprivileged memory

operations. Intrinsic functions are explicitly considered in all

LLVM optimization passes.

In the LLVM backend, OmniWasm leverages the Table-

Gen language to define the custom intrinsic functions, specify

the properties of intrinsic functions, and add patterns that

match both the custom intrinsic functions and correspond-

ing unprivileged memory access instructions. Furthermore,

we have also incorporated our custom offset range check

function into the immediate offset addressing mode pattern

for unprivileged memory access instructions because this part

is missing in the LLVM backend. Consequently, LLVM is

now capable of recognizing the custom intrinsic function and

generating accurate machine code.

Given that intrinsic functions are visible to each LLVM

optimization pass, OmniWasm’s implementation has another

option: either modify the existing optimization passes or write

new optimization passes for the custom intrinsic function.

Both approaches require a deep understanding of the inner

workings of the compiler and are typically undertaken by

experienced compiler developers. This is due to the fact

that memory operations and their semantics are at the core

of many optimization passes. Therefore, OmniWasm uses

a technique that (1) enables explicit use of the instruction

through C programmatic intrinsics, (2) leverages the existing
optimization passes for normal load and store instructions,

and (3) results in linear-memory accesses using ldrt and

sdrt.

The compiler front end (clang) translates the intrinsics

used in the OmniWasm runtime and generates the LLVM

IR (Intermediate Representation), as shown in the first step

(green arrow) in Figure 7. Passing these instructions to the op-

timization stages requires manual optimization which would

be redundant with most of the normal memory optimiza-

tions. Instead, OmniWasm substitutes our custom intrinsic

functions with regular load and store instructions augmented

with OmniWasm-specific metadata that is tracked through

optimizations. LLVM metadata represents information ap-

pended to the IR code, which has no effect on the semantics

of the code. This is shown in transformation 1 . Note the

!custom.intrinsic.ldrt meta-data now bound to a nor-

mal load instruction. The specially defined metadata serves to

differentiate between the load and store instructions generated

Compiler
LLVM IR

Optimizer
LLVM IR

Modified Linker

Binary

     bd8:    6849           ldr    r1, [r1, #4]
     bda:    4408           add    r0, r1
     bdc:    f850 0e00    ldrt    r0, [r0]

Pre Optimization

ldrt = tail call i32 @llvm.arm.ldrt.p0i32(i32* %1)

%2 = load i32, i32* %1, align 4, !tbaa !7,
!custom.intrinsic.ldrt !31

1

LLVM IR

Post Optimization

2

%2 = load i32, i32* %1, align 4, !tbaa !7,
!custom.intrinsic.ldrt !31

  %3 = load i32, i32 addrspace(1)* %2, align 4,
!tbaa !7

Fig. 7: The Compilation Pipeline.

from custom intrinsic functions and those from standard

instructions. Where everything left unchanged from this point

on, the compiler would generate normal loads/stores for linear

memory access. Once LLVM completes the optimization

process in the IR stage (see the “Optimizer” box), we swap

instructions annotated with OmniWasm’s metadata with a

custom “address space” in the optimized IR file. This is seen

in OmniWasm’s transformation in 2 . The LLVM backend

that runs as part of the linker (“Modified Linker”). In the

LLVM backend, at the outset of the instruction selection

phase, we revert the load and store instructions that are

supplemented with the custom address space, back into their

originally intended form of ldrt and sdrt. This process

enables our custom intrinsic functions to be used explicitly

only for linear memory accesses, yet also be optimized

similarly to conventional load and store instructions.

Optimized Inter-Sandbox Communication. The initial im-

plementation of the OmniWasm runtime was inspired by the

UVWasi [21] project and satisfied the minimal requirement

for executing a single WASI application on a microcon-

troller. The UVWasi project implements the WASI system call

API [22] and has been used both by NodeJS and Wasm3. A

WASI application is a Wasm sandbox that contains its own

linear memory, a memory protection mechanism, and a WASI

environment, similar to the file-descriptor set for a UNIX

process.

Unfortunately, this WASI environment results in redundant

sandbox variables and symbols across various sandboxes

when linked together into a conventional single-image mi-

crocontroller system. To ensure isolation between sandboxes,

we process the ELF objects for each sandbox, renaming all

symbols to be sandbox-specific. We provide a “allow-list” of

symbols that the global OmniWasm runtime exposes that are

not renamed, including software exception handlers, and IPC

functions.

To enable sandboxes to interact with sensors, actuators, and

communicate with other sandboxes through IPC, we provide

a runtime for the WASI API that effectively exposes a set

of capabilities (that are used similar to file-descriptors in

UNIX) to use for streams of input and output. The normal,
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polymorphic read and write API equivalents are used to

send and retrieve data.

Listing 2: Host functions to read and write data from sensors/actu-
ators/IPC.

__attribute__((import_name("omniwasm_msg_send")))
void omniwasm_msg_send(const void* pTxData, unsigned

int u32Size);

__attribute__((import_name("omniwasm_msg_recv")))
void omniwasm_msg_recv(void** pMsgBuffer, unsigned

int** u32Size);

When building the microcontroller, the OmniWasm run-

time builds the pipelines of sandboxes statically, thus creates

a compile-time table mapping sandbox output to input. Each

WASI descriptor is associated with an entry in the table. When

such a sandbox attempts to either transmit or receive data, the

host system refers to this table to verify the existence of the

Wasm module associated with the upstream or downstream

sandbox. If a sending sandbox references a descriptor, the

runtime identifies the downstream sandbox, allocates memory

in it, and copies the memory. If a recving sandbox references

a descriptor, identifies the upstream sandbox, validates that it

has sent data, and returns the allocated memory.

V. EVALUATION

This section summarizes the evaluation of MPU-based

bounds checking and the evaluation of OmniWasm IPC.

All evaluations are based on the hardware STM32F767IGT6.

The hardware contains a Cortex M7 series microcontroller

with a 216 MHz, dynamic branch predictor, a single-level

I/D cache of 16KB/16KB, 64-bit ITCM interface, 2x32-bit

DTCM interfaces, SRAM of 512KB, and Flash of 1MB.

ITCM and DTCM are specialized memory areas closely

coupled to the processor, designed to provide fast and deter-

ministic access times for instructions and data, respectively.

Programs allocated in ITCM and DTCM generally exhibit

significantly better performance compared to when they are

allocated in general-purpose RAM. If programs fit entirely

into ITCM and DTCM, we utilize them; when they do not,

we ensure that applications use only normal memory.

Our base system for evaluation contains FreeRTOS oper-

ating system version 10.3.1, arm-none-eabi-gcc compiler

version 10.3.1, LLVM version 13.0 [23], WASI-SDK version

13.0. The Wasm code version of the benchmarks and ap-

plications is built with the WASI-SDK-provided LLVM C

compiler. The native C code version of the benchmarks and

applications, along with eWasm runtime are built with LLVM C

compiler. The FreeRTOS is built with arm-none-eabi-gcc.

Benchmarks. While Polybench [24] was employed in the

original Wasm paper, its emphasis on floating-point arithmetic

makes it less suited for our embedded system evaluation. In

our evaluation, we use CoreMark [25] and MIBench [26].

CoreMark is a small, reproducible benchmark focusing on

basic read/writes, integer operations, and control operations.

Due to its simplicity and reproducibility, CoreMark provides

a clear and stable assessment of the performance overhead

of the processor’s core functionalities caused by our solution.

On the other hand, MIBench is a collection of applications

Fig. 8: CoreMark benchmark execution time for different bounds-
checking methods. The vertical axis is the execution time, normal-
ized to C.

in a variety of embedded domains. Due to its diverse set of

applications, MIBench offers a broader perspective on how

our solution performs under varied and complex scenarios.

While the test cases are based on MIBench, we specifically

use versions from TACLeBench [27] in our experiment due

to their fit for resource-constrained environments.

Applications. In our evaluation, we have selected three

real-world applications: TinyEKF Kalman filter, Arduino

PID (Proportional-Integral-Derivative) library, and CMSIS-

NN. TinyEKF is an algorithm used for sensor fusion and

state estimation. PID controller is a control loop mechanism

used for embedded control systems. Both TinyEKF and PID

controllers are ubiquitous from automotive to industrial appli-

cations. CMSIS-NN is a set of neural network functions used

in microcontrollers for image classification. Benchmarking

with CMSIS-NN will give us insights into how our solution

performs in the domain of AI-centric embedded applications.

Within the TinyEKF project, an established benchmark is

provided specifically for sensor data fusion applications. We

harness this benchmark directly for our evaluation. Similarly,

for the Arduino PID library, we deploy the ”adaptive tuning”

example as our test case. For CMSIS-NN, we use its CIFAR-

10 example to assess performance.

A. MPU-based bounds-checking

To assess our MPU-based bounds-checking method, we

compared it against three other methods using both exe-

cution efficiency and memory consumption as metrics. We

have named our method armv7m mpu since it’s tested on

a hardware platform based on Armv7m. The other methods

we considered are ideal mpu, wrapping, and cond. The

ideal mpu method utilizes regular load and store instruc-

tions. The performance of ideal mpu can represent the

potential performance of our armv7m mpu if the unprivileged

load and store instructions support multiple address modes

and receive official compiler support. The wrapping method

refers to the wrapping bounds checking approach in eWasm,

while cond denotes the conditional bounds checking method

in eWasm. We conducted these comparisons using the bench-

marks and applications mentioned above.

Execution Efficiency. We initiated our evaluation using the

CoreMark benchmarks to assess the execution efficiency

across different bounds-checking methods. For each of the
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Fig. 9: MIBench benchmark execution time for different bounds-
checking methods. The horizontal axis is the different benchmarks,
while the vertical axis is the execution time, normalized to C.

four bounds-checking methods, we ran the corresponding

Wasm code version of the CoreMark benchmark and recorded

the total running time. Since CoreMark requires a minimum

execution time of 10 seconds, we ran it 10,000 times to

ensure accurate measurement. Subsequently, we repeated the

benchmarking process for the native C code version of the

CoreMark. Figure 8 plots the result, with all Wasm execution

times normalized to the native code execution time that is

2534498743 CPU cycles.

In our subsequent evaluation, we focused on the MIBench

benchmarks. MIBench encompasses six embedded application

categories: automotive, office, consumer, network, security,

and telecom. We excluded the office and consumer cate-

gories due to their primary design focus on resource-abundant

embedded systems, such as those running Linux, which

contrasts with our target of a constrained microcontroller

environment. From the remaining four categories, we further

refined our selection by eliminating benchmarks exceeding a

size of 512 KB, the maximum capacity of our hardware’s

SRAM. After filtering, we assessed the execution efficiency

of the remaining benchmarks using different bounds-checking

methods, following the same process as with the CoreMark

benchmark. Figure 9 plots the MIBench results. We also

track the maximum measured execution time for MIBench

benchmarks. We do not plot these values as, in most cases, the

difference ratio between the maximum and average measured

execution times is less than 1%.

While MIBench includes some applications, we augmented

these with more complicated applications to assess the per-

formance of the bounds-checking methods in real-world

applications. We utilized three representative applications:

TinyEKF [28], a lightweight Extended Kalman Filter imple-

mentation; PID Controller [29], a fundamental control loop

mechanism; and CMSIS-NN [30], which is used in image

recognition tasks. Figure 10 plots the runtime normalized to

native C code.

Discussion. The performance overhead of using the

armv7m mpu is observed to be approximately 1.2 times

slower compared to ideal mpu. This deviation was ex-

pected. In Armv7-m, since unprivileged load and store in-

Fig. 10: Application execution time for different bounds-checking
methods. The horizontal axis is the different applications, while the
vertical axis is the execution time.

structions only support an immediate addressing mode with

a limited range of 256, the LLVM backend can offer more

optimization opportunities for the regular load and store

instructions that support more addressing modes. Further-

more, in armv7m mpu, enabling and disabling MPU memory

regions during Wasm module transitions introduces addi-

tional overhead. As a result, when unprivileged load and

store instructions receive hardware support comparable to

the regular ARM load and store operations, we anticipate

that the average performance overhead of our approach

will still be slightly slower than that of the ideal mpu.

Importantly, armv7m mpu has results generally similar to

wrapping, and faster than cond. Even on this hardware

with restrictive unprivileged load and stores, OmniWasm
represents competitive performance. We also observed that for

several benchmarks, the Wasm code executed faster than the

native code. It’s possible that in certain scenarios, the Wasm

code, once compiled, benefited from certain optimizations that

the native code did not, leading to a counterintuitive outcome.

Memory Consumption. We evaluate the memory footprint of

CoreMark, MIBench, and applications. Since the benchmarks

and applications do not use dynamic allocation, both RAM

and flash usage are calculated through static analysis of

the generated binaries. The fundamental flash and RAM

consumption used in our experiments are shown in the table

below:
Memory Driver OS WASI SDK
RAM 1.55 KB 19.35 KB 1.77 KB
Flash 3.7 KB 8.5 KB 14.33 KB

Figures 11, 12 and 13 show the RAM consumption of

MIBench, CoreMark, and applications, respectively. Fig-

ures 14, 15 and 16 show the flash consumption of MIBench,

CoreMark, and applications, respectively. The test results

presented exclude the fundamental consumption listed in the

previous table. Furthermore, the reported RAM consumption

figures include the linear memory configured with a 1KB page

size, not the default 64KB, as mentioned in the implemen-

tation section. The size of data stack of linear memory is

adjusted based on the requirements of the benchmarks and

applications. Specifically, we determine the data stack size

by iteratively reducing its size and running the applications

until they fail, ensuring that we allocate just enough memory

without compromising functionality. We also determine the
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Fig. 11: MIBench RAM footprints for dif-
ferent bounds-checking methods.

Fig. 12: CoreMark RAM footprints for
different bounds-checking methods.

Fig. 13: Application RAM footprints for
different bounds-checking methods.

Fig. 14: MIBench flash footprints for dif-
ferent bounds-checking methods.

Fig. 15: CoreMark flash footprints for dif-
ferent bounds-checking methods.

Fig. 16: Application flash footprints for
different bounds-checking methods.

size of the indirect function call table statically from the

table information in the WebAssembly Text format file. In

our memory comparisons, we favor C by not accounting for

the execution stack size, even though it’s larger for C due to

stack allocations.

Discussion. In our evaluation, the flash footprint figures

indicate that the flash consumption for most Wasm versions is

within four times that of the native code version. However, the

Wasm versions of rad2deg and isqrt consume more than four

times the flash compared to their native code counterparts.

Our measurements of Wasm code, containing only an empty

main function, revealed a flash consumption of around 5 KB.

This result can illuminate the unexpected outcomes observed

in rad2deg and isqrt. Given that the flash consumption of

rad2deg and isqrt ranges between 5KB and 6KB, the default

Wasm code size of 5KB significantly impacts the results. The

RAM footprint figures show that there is a substantial memory

overhead with the wrapping bounds-checking approach, in

comparison to alternative bounds-checking methods. This

stems from its need for memory sizes in powers of two,

often doubling memory usage. Conversely, our MPU bounds-

checking achieves comparable performance without the extra

memory demands seen with wrapping bounds-checking. This

positions our MPU bounds-checking approach as the most

favorable among the three memory protection methods we

examined.

We believe these results validate the fundamental contribu-

tions of OmniWasm: even modern Arm microcontrollers with
only unprivileged load and store instructions with restricted
memory addressing, performance is competitive with the
fastest bounds-checking technique – wrapping. At the same

time, the memory consumption dominates wrapping, validat-

Fig. 17: IPC baseline test.

ing that OmniWasm provides the better of performance and
memory usage.

B. OmniWasm IPC evaluation

We first focus on latency in our assessment of IPC mecha-

nisms. We benchmark our single-copy IPC approach against

the two IPC methodologies offered by FreeRTOS: Queue,

which is designed for passing items between tasks or between

interrupts and tasks, and Stream Buffer, tailored for sending a

stream of bytes between entities. In the baseline test, data of

varying sizes, starting from 1 byte and incrementing in powers

of 2 up to 1024 bytes, is transferred using each IPC method.

We record the latency associated with each data transmission

size. Figure 17 displays the result of the baseline test.

We then focus on stack usage in our assessment of IPC

mechanisms under real-world communication scenarios be-

tween the TinyEKF and PID controller applications. In the

first scenario, the two applications were executed in separate
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threads, utilizing message queues for communication within

FreeRTOS. Subsequently, in the second scenario, the Wasm

versions of the applications were executed within a single

thread in FreeRTOS, employing our custom IPC methods for

communication. The stack usage was measured utilizing the

uxTaskGetStackHighWaterMark API, provided by FreeRTOS.

The results revealed that the stack usage was 0.87 KB in the

first scenario, while it was reduced to 0.58 KB in the second

scenario, saving approximately 33% of the memory.

Discussion. The baseline test results show that as data size

grows, our single memory copy IPC’s latency approaches half

of what FreeRTOS IPC produce. This aligns with our initial

expectations, given that both Queues and Stream Buffers

in FreeRTOS involve two memory copy operations, while

ours requires just one. Notably, for smaller data transmis-

sions—such as a few bytes—our IPC significantly outper-

forms FreeRTOS. This advantage arises because our method

operates within a single thread, avoiding the context switch

overhead inherent to FreeRTOS IPC.

VI. RELATED WORK

SFI. SFI research has a long history, with various strategies

emerging over the years to ensure code safety within sand-

boxed environments. Among these, binary verification [3],

[4], [31] and compiler verification [32], [33], [34] are two

common approaches to verify the safety of sandboxed code.

Binary verification uses static analysis on the binary to

ensure that the required safety checks have been correctly

implemented. Compiler verification proves that any binary

produced by the verified SFI compiler is sandboxed. Since

we simply use special load and store instructions, that happen

to be safety-checked by hardware, our work is complemen-

tary to existing binary verification and compiler verification

processes. We’d expect they could be straight-forwardly ex-

tended to use OmniWasm’s techniques for linear-memory

protection.

CFI. RECFISH [5] instruments the program binary by in-

serting safety checks to maintain control-flow integrity and

leverage the MPU to enforce memory protections. To avoid

the problems of needing to both use the MPU to isolate

memory, and update the shadow stack (tracking function in-

vocations), they make a system call on each function prologue

and epilogue. The overhead on their Arm Cortex-R processor

increases function overheads from 19 to 275 cycles. We

believe that OmniWasm’s optimizations are complementary,

and might enable RECFISH to avoid this overhead, thus speed

up function call operations.

PAC-PL [35] provides CFI support on FPGA-based plat-

forms by utilizing a hardware accelerator for real-time pointer

authentication and leveraging ARM TrustZone and hypervisor

technologies for enhanced security. μRAI [36] ensures CFI

by relocating return addresses to non-writable memory and

utilizing a dedicated State Register to resolve the correct

return locations through direct jump instructions derived

from static call graph analysis. While prior approaches have

adopted diverse strategies for ensuring control-flow integrity,

our study extended this domain by implementing a hardware-

based memory protection mechanism for Wasm programs in

embedded systems, further reinforcing CFI.

Techniques centered around isolating shadow stacks [37],

[38] have aimed to provide CFI using the same unprivileged

load and store instructions used in OmniWasm. Unlike these

works, OmniWasm focuses on providing both SFI and CFI,

thus a strong sandboxing model.

WebAssembly. The open-source community has imple-

mented many different types of Wasm runtime. Among

them, WebAssembly Micro Runtime (WAMR) [39] and Was-

mer [40] are practically designed for resource-constrained

embedded systems. While the Wasm3 [41] interpreter is

designed for a broad range of hardware platforms, it can also

be used in resource-constrained embedded systems. These

Wasm engines, similar to eWasm [10], rely on explicit bounds

checking to provide memory safety. We’ve extended eWasm

with efficient bounds checking and efficient IPC based on

OmniWasm’s use of hardware instructions, and we expect

that the same mechanisms could be applied to other runtimes.

Microcontroller Isolation. Many hardware approaches have

been taken to increasing embedded system security. These

include the use of μ-kernels that can run isolated VMs [42],

Rust kernels that run conventional C code in user-level

using MPU protection [15], and minimal OSes that extend

Sloth [43] that interweave mode transitions into application

code [16]. Generally, such techniques provide strong SFI

execution of application code, but do not provide strong

CFI guarantees for that code. OmniWasm demonstrates that

Wasm sandboxes overhead can be reasonable while providing

both SFI and CFI.

VII. CONCLUSIONS

This research has approached the core challenge of how

to provide strong security protections for code executing on

microcontrollers. To do so, we leverage a WebAssembly com-

piler and runtime to provide strong SFI and CFI properties

for legacy C/C++ code. We’ve introduced OmniWasm which

provides both a novel mechanism to perform bounds check-

ing that leverages MPU hardware, while still maintaining

access for the runtime to sandbox CFI and SFI meta-data.

We’ve also introduced a multi-sandbox communciation which

enables finer-grained sandbox coordination to decrease the

scope errant or malicious behaviors. OmniWasm’s evaluation

demonstrates that these techniques are able to both have

strong performance while also avoiding signification memory

fragmentation, and efficiently communicate between chains of

sandboxes. We believe that OmniWasm is a useful tool for

strongly sandboxing code in future microcontroller systems

that have strong security requirements.
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